MATHEMATICS P2 COMPLETE REVISION & PRACTICE SSIP: NSC EXAM KIT 2020

MGSLG

CONTENTS

TOPICS	PAGE NUMBER
Taxonomy level	2
STATISTICS	
Notes	3 - 9
Diagnostics Report	10
Tips	10
Exam Type Questions	11 - 25
ANALYTICAL GEOMETRYT	
Notes	26 - 37
Diagnostics Report	37
Tips	38
Exam Type Questions	39 - 50
TRIGONOMETRY	
Notes	51 - 64
Diagnostics Report	65
Tips	65 - 66
Exam Type Questions	66 - 83
EUCLIDEAN GEOMETRY	
Notes	84 - 94
Diagnostics Report	95
Tips	96
Exam Type Questions	97 - 120
SOLUTIONS	
Statistics	121 - 137
Analytical Geometry	138 - 179
Trigonometry	180 - 200
Euclidean Geometry	201 - 235

MARKS IN THE PAPER ACCORDING TO TOPICS

TOPICS	MARKS
Statistics	20 ± 3
Analytical Geometry	40 ± 3
Statistics	40 ± 3
Euclidean Geometry	50 ± 3

TAXONOMY LEVELS EXPECTED TO BE IN THE PAPER

Cognitive levels	Description of skills to be demonstrated	Marks Out of
		150
Knowledge 20%	 Straight recall Identification and direct use of correct formula on the information sheet (no changing of the subject) Use of mathematical facts Appropriate use of mathematical vocabulary 	30
Routine procedures 35%	 Estimation and appropriate rounding of numbers Proofs of prescribed theorems and derivation of formulae Identification and direct use of correct formulae the information sheet (No changing of the subject) Perform well known procedures Simple applications and calculations which might involve few steps Derivation from given information may be involved Identification and use (after changing the subject) of correct formula Generally similar to those encountered in class. 	52,5
Complex procedures 30%	 Problems involve complex calculations and/or higher order reasoning There is often not an obvious route to the solution Problems need not be based on a real-world context Could involve making significant connections between different representations Require conceptual understanding 	45
Problem solving 15%	 Unseen, non-routine problems (which are not necessarily difficult) Higher order understanding and processes are involved Might require the ability to break the problem down into its constituent parts 	22,5

STATISTICS

15 PIE CHART						
• Can you draw a pie chart? Basically, it represents the same data than a bar chart. The frequency of						
each bar is calculated as a percentage of the total.						
The same percent	• The same percentage is calculated of 360°. THIS IS THE SIZE OF THE SECTOR ANGLE (the sector angle					
is the angle of th	ne slice of e.g. a piece of	pizza – the angle at the	centre det	ermines the si	ze of the	
slice.)						
16 COMPOUND BAR GR	APHS:					
 boys/ girls dis 	stribution in a number of	classes				
 yes/no respon 	ses to a number of quest	tions		_		
DIVIDED BAR CHA	RT: same information bu	t on top of each other				
17 HISTOGRAM			l			
The intervals	s can be height, time, age	e, length, marks and so fo	rth.			
The number	of data items that fall w	ithin a certain interval is	the freque	ncy of the inte	erval. The	
height of the	bar reflects the frequen	cy of the items falling wit	hin an inte:	rval.		
 The bars tou 	<mark>.ch</mark> because the number	intervals are continuous.	. We say: n	umerical class	intervals	
are displayed	d on the horizontal axis.					
From the his	togram you can be asked	to draw an ogive.				
18 FREQUENCY POLY	GON		_1		7	
The midpoints of	the class intervals of a h	istogram are calculated.	These			
midpoint values	are indicated at the tops	of the bars. Then these				
midpoints are co	nnected. The polygon is	anchored to the horizont	al axis			
on the left-hand	side of the first bar and i	the right-hand side of the	e last bar.			
19 LINE GRAPH / BRO	JKEN LINE GRAPH					
Iviost often seen li	n the financial pages of r	iewspapers (e.g. JSE).				
Snows Incre	asing or decreasing trend	as or changes over time	awawah			
	e predictions based on the	në trena observea in the	grapn.			
	All ve Frequency table and f	rom that you have to dr	w an ogiv	- This is a ve	ny cryntic	
example but sho	ws the principle				y ci yptic	
DRAWING: Cumi	lative frequency on the v	v – axis and class interval	s on the x -	axis		
Age intervals	Frequency (amount of	Cumulative frequency	Ordered	number		
	people falling within		pairs that	are "made"		
	this age interval)		with the i	nformation		
0 < <i>x</i> ≤ 10	2	2	(10 ; 2)			
10 < x ≤ 20	13	15	(20 ; 15)			
20 < x ≤ 30	18 +	33	(30 ; 33)			
30 < x ≤ 40	30 < x ≤ 40 16 + 49 (40 ; 49)					
40 < x ≤ 50	6 +	55	(50 ; 55)			
ORDERED PAIRS						
NB: TO DETERMINE THE	ORDERED PAIR USE THE	VALUE OF THE UPPER LI	MIT OF TH	E CLASS INTER	VAL AND	
CUMULATIVE FREQUENC	Y					
GROUNDING						
Use the value of the low	er limit of the first class	interval and zero then gr	ound the g	raph.		
Sometimes in the class interval inequalities the inequalities change position e.g.						

 $0 < x \le 10$ will be $0 \le x < 10$

20.1 QUARTILES (Q1, Q3 and the Median) FROM AN OGIVE Lower Quartile (Q_1) = $\frac{1}{4} \times (n + 1) = Position$ Median (Q_2) = $\frac{1}{2} \times (n + 1) = Position$ Upper Quartile (Q_3) = $\frac{3}{4} \times (n + 1) = Position$

Once all the values have been found draw a line from the y – axis to the graph and then read the x – values at this point.

20.2 BOX AND WHISKER FROM AN OGIVE

20.3 FREQUENCY TABLE FROM AN OGIVE.

This means you must work backwards and determine the frequency of each interval that originally was in the frequency table. Practise this.

20.4 From the ogive, you can be asked to draw a histogram.

21 AVERAGE e.g. AGE WHEN GIVEN A FREQUENCY TABLE:

Age intervals	Midpoint (average) of each age interval	Frequency (amount of people falling within this age interval)	
	\overline{x}		\overline{x} .f
0 < <i>x</i> ≤ 10	$\frac{0+10}{2} = 5$	2	2×5=10
10 < <i>x</i> ≤ 20	$\frac{10+20}{2} = 15$	13	13×15=195
20 < <i>x</i> ≤ 30	25	18	$18 \times 25 = 450$
3 0 < <i>x</i> ≤ 40	35	16	$16 \times 35 = 560$
40 < <i>x</i> ≤ 50	45	6	$6 \times 45 = 270$
		55 people	10+195+450+560+270=1 485

Approximate average of all the ages = $\frac{1485}{55}$ = 27

ONE LOSES THE DETAIL OF THE DATA IN A TABLE LIKE THIS.

EG. The 6 ages data in the last interval $40 < x \le 50$ could have been: 41 47 49 50 46 42 If we take the midpoint (average) of the interval, then we say the ages are: 45 45 45 45 45 45

21.1 THE MODAL CLASS INTERVAL: the class interval with most data items.

21.2 THE CLASS INTERVAL WHERE THE MEDIAN OF THE DATA LIES In this case: $20 < x \le 30$ THE 27^{TH} DATA ITEM LIES HERE.

г

STANDARD the data above AN INTERV [5 - δ ; which gives	$\frac{3}{4}$ $\frac{4}{8}$ 5 Total: 20 Mean: $\frac{20}{4} = 5$ DEVIATION (but the mean.	3-5 4-5 8-5 5-5 $(\delta) = \sqrt{3,5} =$	-2 -1 3 0	(-2) ² (-1) ² (3) ² (0) ²	4 1 9 0 Total: 14 14 = $\sum (x - \overline{x})^2$ Mean of these squared values = $\frac{14}{4} = 3,5$
STANDARD the data above AN INTERV [5 - δ ; which gives	$\frac{4}{8}$ 5 Total: 20 Mean: $\frac{20}{4} = 5$ DEVIATION (but the mean.	4-5 8-5 5-5	-1 3 0	(-1) ² (3) ² (0) ²	$\frac{1}{9}$ 0 Total: 14 $14 = \sum (x - \overline{x})^2$ Mean of these squared values $= \frac{14}{4} = 3,5$
STANDARD the data above AN INTERV [5 - δ ; which gives	$\frac{8}{5}$ Total: 20 Mean: $\frac{20}{4} = 5$ DEVIATION (but the mean.	8-5 5-5	3 0	(3) ² (0) ²	9 0 Total: 14 14 = $\sum (x - \overline{x})^2$ Mean of these squared values = $\frac{14}{4} = 3,5$
STANDARD the data above the data	5 Total: 20 Mean: $\frac{20}{4} = 5$ DEVIATION (but the mean.	$(\delta) = \sqrt{3,5} =$	0	(0) ²	0 Total: 14 14 = $\sum (x - \overline{x})^2$ Mean of these squared values = $\frac{14}{4} = 3,5$
STANDARD the data above AN INTERV [5 - δ ; which gives	Total: 20 Mean: $\frac{20}{4} = 5$ DEVIATION (but the mean.	$(\delta) = \sqrt{3,5} =$			Total: 14 14 = $\sum (x - \overline{x})^2$ Mean of these squared values = $\frac{14}{4} = 3,5$
STANDARD the data abo AN INTERV [5 - δ ; which gives	Mean: $\frac{20}{4} = 5$ DEVIATION (but the mean.	$(\delta) = \sqrt{3,5} =$			$14 = \sum_{x \to x} (x - x)^{2}$ Mean of these squared values $= \frac{14}{4} = 3,5$
STANDARD the data abo AN INTERV [5 - δ ; which gives	Mean: $\frac{20}{4} = 5$ DEVIATION (but the mean.	$(\delta) = \sqrt{3,5} =$			Mean of these squared values = $\frac{14}{4} = 3,5$
STANDARD the data abo AN INTERV [5 - δ ; which gives	$\frac{20}{4} = 5$ DEVIATION (but the mean.	$(\delta) = \sqrt{3,5} =$			$=\frac{14}{4}=3,5$
STANDARD the data above AN INTERV [5 - δ ; which gives	4 DEVIATION (but the mean.	$(\delta) = \sqrt{3,5} =$			1 3,3
STANDARD the data abo AN INTERV [5 - δ ; which gives	DEVIATION (but the mean.	$(\delta) = \sqrt{3,5} =$			4
STANDARD the data abo AN INTERVA [5 - δ ; which gives	DEVIATION (but the mean.	$(\delta) = \sqrt{3,5} =$			THE VARIANCE IS 3,5
 [5 – 2. δ ; 9 which gives: SCATTER PL The data i The order The data i (1) Years/ (4) Shelf sp The line o points are Being able To interp informatie The corres 	$5 + 2. \delta$] [5 [1,26; 8,74 OT are recorded a red number part investigate a part Numbers (2) Notes in a shop of best fit is the e "scattered" is the to extrapolation to based on t elation refers	5 – 1,87 – 1,87 4] How man as ordered nu airs are plotte bossible relati Wrist size/sho /Weekly sale e trend line d n a straight lin te (reading of to estimate he line of besi to how strong	7;5+ y data it d on a C onship k be size (of an ite rawn or ne, para f inform by "obs t fit of th g the re	1,87 + 1,8 ems lie in this airs. CAN YOU Cartesian plan between thing 3) Mathemati em n a scatter plo bola, hyperbo ation from ex serving" the ne known data lationship see	7] interval? PLOT POINTS? e. gs like: ics marks/ English marks t or scatter diagram. It shows wheth bla or an exponential graph shape. itended parts of the line of best fit). known data around a point (read a) ems to be. It could be non-existent,

23.1 LEAST SQUARES REGRESSION LINE

- It is a straight line in the form y = mx + c is represented as y = A + Bx where B is the gradient and A is the y - intercept.
- The line will always pass through the mean point of the data set($\overline{x}; \overline{y}$)
- The mean point is determined by determining the mean of the x values (\bar{x}) and the mean point of the y values(\bar{y}).

CASIO CALCULATOR

USING A CALCULATOR TO DETERMINE REGRESSION LINES AND THE MEAN POINT

STEP	BUTTON TP PRESS/METHOD	CALCULATOR DISPLAY				
1	Mode	A list of various modes				
2	2 (STAT)	A list of options in STAT mode				
3	<mark>2</mark> (A +BX)	A table to input x and y values				
4	Input each data value for (x) and (y) one at a time , pressing the = button after each entry					
5	Once all the data is entered press AC	0				
6	Shift 1 (STAT)	A list of options to choose				
7	<mark>5</mark> (Reg)	1: A 2: B				
		$3: \mathbf{r}$ $4: \hat{\mathbf{x}}$				
		5:ŷ				
8	Pressing 1 will display the value of A . Pressing 2 will display the value of B . Pressing 3 will display					
	correlation coefficient r.					
9	1 (A) and then =	24,8121547				
10	To determine the value of B repeat 6, 7 and 8 pressing 2 (B)	instead of 1				
11	1(B) and then =	0,2779005525				
12	To determine the mean $(\overline{x}; \overline{y})$ point of the data set repeat ste	ep 6				
13	4 (Var)	1: n $2:\bar{x}$				
		3: δ <i>x</i> 4: sx				
		$5:\overline{y}$ $6:\delta y$				
		7: sy				
14	Pressing 2 will display the x – value of the mean point (82) and	pressing 5 will display the y – value				
	of the mean point(47,6)					

e.g.

Time (Minutes)	10	40	80	120	160
Temperature (°C)	30	35	43	60	70

The equation of the line best fit: y = 24,81 + 0,28xMean point (82 ; 47,6) Correlation coefficient (r) = 0,9881730865

NOTES ON REGRESSION LINES

- It is important to understand that a linear regression line can be fitted to any data set.
- The linear line is not always the ideal line to use.
- Different association can be shown on bivariate data which are:
 - ✓ Quadratic association
 - ✓ Inverse association
 - ✓ Exponential association

23.2 CORRELATION COEFFICIENT

- Correlation coefficient is represented by *r*
- Correlation coefficient tell us about the strength of the relationship between the variables.
- It tells us well the data fits the line of best fit.
- Correlation coefficient always lie between and including 1 and -1

NB: DO NOR ROUND OF THE CORRELATION COEFFICIENT TO AN INTERGER

<i>r</i> ≈	Correlation
1	Perfect positive association
0,9	Strong positive association
0,5	Moderate positive association
0,2	Weak positive association
0	No correlation
-0,2	Weak negative association
-0,5	Moderate negative association
-0,9	Strong negative association
-1	Perfect negative association

e.g.

					1. · · · · · · · · · · · · · · · · · · ·
<i>r</i> ≈ 0,2	<i>r</i> ≈ 0,4	<i>r</i> ≈ 0,7	<i>r</i> ≈ 0,9	$r \approx -0,5$	$r \approx -0,8$

24 THE STEM AND LEAF PLOT OR DIAGRAM

1	Row 1:	2,
		Ro

2, 3	Leading digits (TENS)	Trailing digits (UNITS)	
Row	0	23	2: 10, 12, 14, 15
Row	1	0245	3: 2 0, 2 3, 2 4, 2 5
Row	2	346	4: 3 2, 3 5, 3 7, 3 7
	3	2577	

The bold 1, 2 and 3 come from the first column in the table and represent tens.

NB Calculator usage is an Important skill in this topic

TECHNICAL REPORT FINDINGS

COMMON ERRORS AND MISCONCEPTION

Learners entering incorrect values on the calculator. Identification of independent variable and dependent variable is challenging on determine the equation of a least square regression equation.

Learners still swapping the value of A and B on the equation of the least square regression line Drawing an Ogive is still a challenge.

- Grounding the graph
- Using of the correct values (Cumulative frequency or frequency)
- Using lower class limit and upper-class limit.

Rounding off to the required decimal is still a challenge.

Word such as "Predict" challenge learners as such learners just guess the answer.

Using the information to prove as if it is the given information.

Calculator usage is still a problem

SUGGESTION FOR IMPROVEMENT

Learners to be given multiple opportunities to practice calculator skills

Learners should be made aware that the operation procedure varies from one brand of the calculator to another.

It is advisable to use the same brand that has been used during the year even in the examination. Teachers to always emphasise correct rounding off.

Teachers should explain each definition or concept in detail.

It is important for teachers to discuss the independent and dependent variables.

Learners should be taught to use the regression to make predictions.

Teachers should stress to learners that it is not permissible to use information that they must prove as if it is given information.

Graphs are an integral part of Statistics, learners should be given more practice on drawing graphs, reading off from the graphs and interpreting the graphs.

Grounding of an ogive should be emphasised.

Drawing an ogive SEE NUMBER 20 on the NOTES

EXAM TIPS WHEN ANSWERING STATISTICS QUESTIONS

- Read the information more than once.
- Analyse and understand the data(Information) given
- It is advisable to Use colour to analyse information given.
- Make sure your calculator is in good working condition.

WARM UP QUESTIONS OR PRACTICE QUESTIONS												
NOVEMBER GRADE 11 2018												
QUESTION 1												
A school held a sports day. One of the items on the programme was an obstacle race. Teams of 10 parents and learners participated in this race. The table below shows the time taken, in minutes, by each member of a particular team to complete the race.												
	4	12	13	16	17	18	20	22	22	25		
1.1	How lon the race?	g, in m	inutes,	did it t	ake for	the fas	test me	mber of	f this te	am to (complete	(1)
1.2	Determin	e the m	ean tim	e taken	by this	team.						(2)
1.3	Calculate	the star	ndard de	eviation	for the	data.						(1)
1.4 How many members of the team completed the obstacle race outside of two standard deviations of the mean?									(3)			
1.5	It took ar value of	nother te x if the	eam a to overall	otal time mean c	e of $x+$ of the tw	5 mint vo teams	utes to c s combi	complet ned was	e the rad s 18 min	ce. Calc iutes.	ulate the	(3) [10]

2.1 A survey was conducted of the ages of players at a soccer tournament. The results are shown in the cumulative frequency graph (ogive) below.

EXAM KIT 202

2.2 Two Grade 11 Mathematics classes have the same number of learners. The fivenumber summaries of the marks obtained by these classes for a test are shown below. CLASS A (30; 48; 65; 82; 90) CLASS B (50; 58; 65; 75; 90) The parents of learners in CLASS A and CLASS B observe that both classes have the same median and the same maximum mark and therefore claim that there is no difference in the performance between these classes. Do you agree with this claim? Use at least TWO different arguments to justify your answer. (3)[13] **NOVEMBER GRADE 11 2017 QUESTION 1** Mr Brown conducted a survey on the amount of airtime (in rands) EACH student had 1.1 on his or her cellphone. He summarised the data in the box and whisker diagram below. 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 (2)1.1.1 Write down the five-number summary of the data. (1)1.1.2 Determine the interquartile range. Comment on the skewness of the data. (1)1.1.3

1.	2	A grou batterie	ip of 13 es requi	studen red rech	ts indic arging.	cated ho The int	ow long formatio	; it took on is giv	(in ho ven in th	urs) bef ne table	ore thei below.	r cellpi	hone	
	5	8	10	17	20	29	32	48	50	50	63	у	107	
3														
		1.2.1	Ca	lculate	the valu	ue of y	if the n	nean for	this da	ta set is	41.			(2)
		1.2.2	If	y = 94	, calcu	late the	standar	d deviat	tion of t	he data.				(1)
	1.2.3 The mean time before another group of 6 students needed to recharge the batteries of their cellphones was 18 hours. Combine these groups and calculate the overall mean time needed for these two groups to recharge the batteries of their cellphones.											(3) [10]		

2.3

A student conducted a survey among his friends and relatives to determine the relationship between the age of a person and the number of marketing phone calls he or she received within one month. The information is given in the table below.

AGE OF PERSON IN SURVEY	FREQUENCY	CUMULATIVE FREQUENCY
$20 < x \le 30$	7	7
$30 < x \le 40$		27
$40 < x \le 50$	25	
$50 < x \le 60$		64
$60 < x \le 70$		72
$70 < x \le 80$	4	
$80 < x \le 90$		80

- 2.1 Complete the frequency and cumulative frequency columns in the table given in the ANSWER BOOK. (4)
- 2.2 How many people participated in this survey?

Write down the modal class.

- (1) (1)
- 2.4 Draw an ogive (cumulative frequency graph) to represent the data on the grid given in the ANSWER BOOK. (3)
- 2.5 Determine the percentage of marketing calls received by people older than 54 years. (3) [12]

TYPICAL EXAM QUESTIONS

NOVEMBER 2019

QUESTION 1

1.1

The table below shows the monthly income (in rands) of 6 different people and the amount (in rands) that each person spends on the monthly repayment of a motor vehicle.

MONTHLY INCOME (IN RANDS)	9 000	13 500	15 000	16 500	17 000	20 000
MONTHLY REPAYMENT (IN RANDS)	2 000	3 000	3 500	5 200	5 500	6 000

(3) 1.2 If a person earns R14 000 per month, predict the monthly repayment that the person could make towards a motor vehicle. (2)

Determine the equation of the least squares regression line for the data.

- 1.3 Determine the correlation coefficient between the monthly income and the monthly repayment of a motor vehicle.
- 1.4 A person who earns R18 000 per month has to decide whether to spend R9 000 as a monthly repayment of a motor vehicle, or not. If the above information is a true representation of the population data, which of the following would the person most likely decide on:
 - Α Spend R9 000 per month because there is a very strong positive correlation between the amount earned and the monthly repayment.
 - В NOT to spend R9 000 per month because there is a very weak positive correlation between the amount earned and the monthly repayment.
 - Spend R9 000 per month because the point (18 000 ; 9 000) lies very near to the С least squares regression line.
 - D NOT to spend R9 000 per month because the point (18 000 ; 9 000) lies very far from the least squares regression line.

(2)[8]

(1)

A survey was conducted among 100 people about the amount that they paid on a monthly basis for their cellphone contracts. The person carrying out the survey calculated the estimated mean to be R309 per month. Unfortunately, he lost some of the data thereafter. The partial results of the survey are shown in the frequency table below:

AMOUNT PAID (IN RANDS)	FREQUENCY
$0 < x \le 100$	7
$100 < x \le 200$	12
$200 < x \le 300$	a
$300 < x \le 400$	35
$400 < x \le 500$	Ь
$500 < x \le 600$	6

2.5	Determine how many people paid more than R420 per month for their cellphone contracts.	(2) [13]
2.4	On the grid provided in the ANSWER BOOK, draw an ogive (cumulative frequency graph) to represent the data.	(4)
2.3	Write down the modal class for the data.	(1)
2.2	Use the information above to show that $a = 24$ and $b = 16$.	(5)
2.1	How many people paid R200 or less on their monthly cellphone contracts?	(1)

NOVEMBER 2018

QUESTION 1

1.1

The cumulative frequency graph (ogive) drawn below shows the total number of food items ordered from a menu over a period of 1 hour.

MATHEMATICS

EXAM KIT 202

PAPER 2

1.2	Reggie w (in rands)	orks part-t he made in	time as a s a tips over a	waiter at a 15-day per	local rest riod is given	aurant. Th n below.	e amount of money						
		35	70	75	80	80							
		90 100 100 105 105											
		110	110	115	120	125							
	1.2.1	1 Calculate:											
		(a) The mean of the data											
		(b) The	standard d	eviation of	the data			(2)					
	1.2.2	Mary als same 15 Reggie, l	o works pa -day period out her stan	urt-time as a d Mary col dard deviat	a waitress a llected the ion was R1	at the same same mea 4.	e restaurant. Over the an amount in tips as						
		Using the	e available	informatior	n, comment	on the:							
		(a) Total amount in tips that they EACH collected over the 15-day period											
		(b) Variation that EACH of them received in daily tips over this period (

A familiar question among professional tennis players is whether the speed of a tennis serve (in km/h) depends on the height of a player (in metres). The heights of 21 tennis players and the average speed of their serves were recorded during a tournament. The data is represented in the scatter plot below. The least squares regression line is also drawn.

(3)

(2) [7]

NOVEMBER 2017

QUESTION 1

The table below shows the time (in seconds, rounded to ONE decimal place) taken by 12 athletes to run the 100 metre sprint and the distance (in metres, rounded to ONE decimal place) of their best long jump.

Time for 100 m sprint (in seconds)	10,1	10,2	10,5	10,9	11	11,1	11,2	11,5	12	12	12,2	12,5
Distance of best long jump (in metres)	8	7,7	7,6	7,3	7,6	7,2	6,8	7	6,6	6,3	6,8	6,4

The scatter plot representing the data above is given below.

The equation of the least squares regression line is $\hat{y} = a + bx$.

- 1.1 Determine the values of a and b.
- 1.2 An athlete runs the 100 metre sprint in 11,7 seconds. Use $\hat{y} = a + bx$ to predict the distance of the best long jump of this athlete. (2)
- 1.3 Another athlete completes the 100 metre sprint in 12,3 seconds and the distance of his best long jump is 7,6 metres. If this is included in the data, will the gradient of the least squares regression line increase or decrease? Motivate your answer without any further calculations.

20

In an experiment, a group of 23 girls were presented with a page containing 30 coloured rectangles. They were asked to name the colours of the rectangles correctly as quickly as possible. The time, in seconds, taken by each of the girls is given in the table below.

12	13	13	14	14	16	17	18	18	18	19	20
21	21	22	22	23	24	25	27	29	30	36	

2.1 Calculate:

	2.1.1	The mean of the data	(2)
	2.1.2	The interquartile range of the data	(3)
2.2	The standa longer than	rd deviation of the times taken by the girls is 5,94. How many girls took ONE standard deviation from the mean to name the colours?	(2)
2.3	Draw a box the ANSW	and whisker diagram to represent the data on the number line provided in ER BOOK.	(3)
2.4	The five-m colours of t	umber summary of the times taken by a group of 23 boys in naming the the rectangles correctly is (15; 21; 23,5; 26; 38).	
	2.4.1	Which of the two groups, girls or boys, had the lower median time to correctly name the colours of the rectangles?	(1)
	2.4.2	The first three learners who named the colours of all 30 rectangles correctly in the shortest time will receive a prize. How many boys will be among these three prizewinners? Motivate your answer.	(2) [13]

(1)

NOVEMBER 2016

QUESTION 1

A survey was conducted at a local supermarket relating the distance that shoppers lived from the store to the average number of times they shopped at the store in a week. The results are shown in the table below.

Distance from the store in km	1	2	3	4	5	7	8	10
Average number of times shopped per week	12	10	7	7	6	2	3	2

1.1 Use the scatter plot to comment on the strength of the relationship between the distance a shopper lived from the store and the average number of times she/he shopped at the store in a week.

1.2	Calculate the correlation coefficient of the data.	(1)
1.3	Calculate the equation of the least squares regression line of the data.	(3)
1.4	Use your answer at QUESTION 1.3 to estimate the average number of times that a shopper living 6 km from the supermarket will visit the store in a week.	(2)
1.5	Sketch the least squares regression line on the scatter plot provided in the ANSWER BOOK.	(2) [9]

The heights of 160 learners in a school are measured. The height of the shortest learner is 1,39 m and the height of the tallest learner is 2,21 m. The heights are represented in the histogram below.

NOVEMBER 2015

QUESTION 1

The table below shows the total fat (in grams, rounded off to the nearest whole number) and energy (in kilojoules, rounded off to the nearest 100) of 10 items that are sold at a fast-food restaurant.

Fat (in grams)	9	14	25	8	12	31	28	14	29	20
Energy (in kilojoules)	1 100	1 300	2 100	300	1 200	2 400	2 200	1 400	2 600	1 600

- 1.1 Represent the information above in a scatter plot on the grid provided in the ANSWER BOOK. (3)
 1.2 The equation of the least squares regression line is ŷ = 154,60 + 77,13x.
 1.2.1 An item at the restaurant contains 18 grams of fat. Calculate the number of kilojoules of energy that this item will provide. Give your answer rounded off to the nearest 100 kJ. (2)
 - 1.2.2 Draw the least squares regression line on the scatter plot drawn for QUESTION 1.1. (2)
- 1.3
 Identify an outlier in the data set.
 (1)

 1.4
 Calculate the value of the correlation coefficient.
 (2)

 1.5
 Comment on the strength of the relationship between the fat content and the number of kilojoules of energy.
 (1)

A group of 30 learners each randomly rolled two dice once and the sum of the values on the uppermost faces of the dice was recorded. The data is shown in the frequency table below.

Sum of the values on uppermost faces	Frequency		
2	0		
3	3		
4	2		
5	4		
6	4		
7	8		
8	3		
9	2		
10	2		
11	1		
12	1		

2.1 Calculate the mean of the data. (2)
2.2 Determine the median of the data. (2)
2.3 Determine the standard deviation of the data. (2)
2.4 Determine the number of times that the sum of the recorded values of the dice is within ONE standard deviation from the mean. Show your calculations. (3)
[9]

ANALYTICAL GEOMETRY

NOTES TO REVISE WITH

1. The distance formula.

$$d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

2. What to do if the distance of a line is given and either a *y* or an *x* is missing. *Suppose the distance equals 5 and one* variable is missing

Then:
$$5 = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

Square both sides and solve.

3. The midpoint formula.

$$\left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right)$$

4. What to do if the ordered number pair at the midpoint is given and they want a *y* or an *x* at one of the end points of the line.

 $x = \frac{x_1 + x_2}{2}$ and $len \quad y = \frac{y_1 + y_2}{2}$ where x and y are the values at the

midpoint that are known, and the unknown value(s) is/are one or two of the other coordinates in the end point ordered number pairs.

5. How to calculate the gradient (steepness, slope) of a straight line.

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

6. The gradients of parallel lines are equal.

IF AB \parallel CD then $m_{AB} = m_{CD}$

7. The product of the gradients of perpendicular lines is equal to -1. If $AB \perp CD$ then $m_{AB} \times m_{CD} = -1$

19 Still about collinear points. Three points A, B and C are said to be collinear. One of the *x* or *y* values is missing. *How* does one find one missing *x* or *y* value? Use two gradients that are equal. Build your own equation: m_{AB} = m_{AC} Multiply by the LCD and solve.
19. Standard form (equation) of the circle with centre *on* the origin and radius *r*. (x - 0)² + (y - 0)² = r² which becomes x² + y² = r²
20. Standard form (equation) of the circle with centre (*a*; *b*) away from the origin and radius *r*. (x - a)² + (y - b)² = r²

<u>Case 1</u>: Given a circle with centre C (a; b) and radius r, then....

21. How to determine the equation of a circle with centre away from the origin:

 $(x-a)^2 + (y-b)^2 = r^2$

<u>Case 2</u>: Given a circle with centre C and a point on the circle, say Q.

First calculate QC (distance formula) to determine the value of the radius, r. Then substitute centre C and the value of r^2 correctly into the circle equation,

$$(x-a)^2 + (y-b)^2 = r^2$$

22. How to find the centre if the equation of a circle is given. Shuffle the terms. x terms next to each other, y terms next to each other (if not given like this). Complete the square for the *x* terms and complete the square for the *y* terms. Factorise. Remember to add the values that are added on the L H Side to complete the square, to the R H Side. The additive inverses of the constants in the brackets are the x and the y values of the centre. *EG* : Determine the centre and radius of $x^2 + 4x + y^2 - \frac{3}{5}y = 4\frac{91}{100}$ **SOLUTION**: $x^{2} + 4x + y^{2} - \frac{3}{5}y = 4\frac{91}{100}$ $x^{2} + 4x + (2)^{2} + y^{2} - \frac{3}{5}y + (-\frac{3}{10})^{2} = 4\frac{91}{100} + (2)^{2} + (-\frac{3}{10})^{2}$ $(x + 2)^{2} + (y - \frac{3}{10})^{2} = 4\frac{91}{100} + 4 + \frac{9}{100}$ $(x + 2)^{2} + (y - \frac{3}{10})^{2} = 8\frac{100}{100}$ $(x + 2)^{2} + (y - \frac{3}{10})^{2} = 9$ Centre: $\left(-2; +\frac{3}{10}\right)$ $r^2 = 9, \therefore r = \sqrt{9} = 3$

Since the radius is perpendicular to the tan gent, the product of the gradients will equal -1.

This implies that you can only determine the gradient of the tangent through the gradient of the radius (and vice versa).

$$m_{radius} \cdot m_{tangent} = -1$$
So if $m_{radius} = \frac{3}{4}$, then $m_{tangent} = -\frac{4}{3}$ since $\frac{3}{4} \times -\frac{4}{3} = -1$
or if $m_{radius} = -\frac{7}{6}$, then $m_{tangent} = +\frac{6}{7}$ since $-\frac{7}{6} \times \frac{6}{7} = -1$

25. Intercepts on the axes???

This is old news:

- if you want the x intercept(s): let y = 0 and solve for x.
- if you want the *y* intercept(s): let *x* = 0 and solve for *y*.

26. Questions about the diameter.

The circle has a centre, remember, and on the diameter **the radius = radius.** Watch out for questions involving the midpoint formula:

$$\left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right)$$

OR: they give the centre and one point on the circle. You go like in number 4.

Quadrilateral	Side lengths	Side gradients (pairs of parallel sides?)	Angles at vertices	Diagonals bisect each other are equal	
Parallelogram	two pairs of opposite sides are equal	two pairs of opposite sides are parallel	two pairs of opposite angles are equal		
Rectangle	two pairs of opposite sides are equal	two pairs of opposite sides are parallel	all 4 equals to 90º		
Square	all sides are equal	two pairs of opposite sides are parallel	all 4 equals to 90º	are equal, bisect each other and intersect at 90	
Rhombus (diamond)	all sides are equal	two pairs of opposite sides are parallel	two pairs of opposite angles are equal	bisect each other at 90⁰	
Kite	two pairs of adjacent sides are equal	no parallel sides	one pair of opposite angles are equal	intersect at 90 but are unequal	
Isosceles trapezium	Non-parallel sides are equal	one pair of opposite sides are parallel	Two pairs of equal angles	equal	
Trapezium		one pair of opposite sides are parallel			
9.It is important the often is necessary in	at you revise the properties of these q Analytical Geometry. HOW WOULD Y	OU NEED THIS?			
---	--	--			
PROVE THAT A QUA	ADRILATERAL IS A	FORMULAE			
PARALLELOGRAM	• 2 pairs of opposite sides parallel	$m = \frac{y_2 - y_1}{x_2 - x_1}$			
Or	• 2 pairs of opposite sides equal	$d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$			
Or	One pair of opposite sides equal and parallel	$d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$ $m = \frac{y_2 - y_1}{x_2 - x_1}$			
RECTANGLE	 2 pairs of opposite sides parallel AND 1 ANGLE = 90° 	$d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$ $m_{AB} \cdot m_{CD} = -1$			
Or	 2 pairs of opposite sides equal AND 1 ANGLE = 90° 	$d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$ $m_{AB} \cdot m_{CD} = -1$			
Or	The 2 diagonals equal and bisect each other	$d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2} \\ \left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right)$ The two midpoints must be equal			
SQUARE	 4 sides equal AND 1 ANGLE = 90° 	$d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$ $m_{AB} \cdot m_{CD} = -1$			
Or	• The two diagonals equal and bisect (halve) each other at 90°	$d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$ $m_{AB} \cdot m_{CD} = -1$ $\left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right)$ The two midpoints must be equal.			
RHOMBUS	• 4 sides equal	$d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$			
RHOMBUS	 Diagonals bisect (halve) each other at 90° 	$m_{AB} \cdot m_{CD} = -1$ $\left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right)$ The two midpoints must be equal.			
KITE	• 2 pairs of adjacent sides equal	$d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$			
Or	 One diagonal is bisected The 2 diagonals intersect at 90° 	$\left(\frac{x_{1} + x_{2}}{2}; \frac{y_{1} + y_{2}}{2}\right)$			
TRAPEZIUM	One pair of opposite sides is parallel	$m_{AB} \cdot m_{CD} = -1$ $m_{AB} = \dots $			

JU.AREA FURIVIULAE	
Parallelogram	base. height
Rectangle	length. breadth
Square	side. side
Rhombus	base. height
Kite	½ (diagonal 1. diagonal 2)
	= ½ (product of the diagonals)
Trapezium	1/2 (sum of the parallel sides). height
Circle	π .r.r = π .r ²
Triangle ABC	½. base. height
	Or
	½ <i>a.b</i> .sin C (SAS – trig formula may be used in
	Analytical Geometry)

TECHNICAL REPORT FINDINGS

COMMON ERRORS AND MISCONCEPTIONS

Gradient formula written incorrectly as e.g. $\frac{x_2 - x_1}{y_2 - y_1}$ Distance formula written incorrectly e.g.: $d = \sqrt{(x_2 + x_1)^2 - (y_2 + y_1)^2}$ Learners are inconsistent in substituting values. Learners substitution values that do not lie on the line of circle. Lack of interpretation of diagrams. Learners not indicate the figure they are working in. Integration of topics is still a challenge. SUGGESTION FOR IMPROVEMENT Emphasise to learners to copy the formulae from the formula sheet. Learners to label their coordinates as $(x_1; y_1)$ and $(x_2; y_2)$. It should be emphasised that only points that lie on the graph can be used. Analyse the diagram before attempting to answer question. In the analysis of the diagram use colour and mark off information on the diagram. Indicate the figure you are working in. e.g. In $\triangle ABC$. Different topics in Mathematics should be integrated. Learners must be able to establish the

connection between Euclidean Geometry and Analytical Geometry

EXAM TIPS WHEN ANSWERING STATISTICS QUESTIONS

- Learners must learn which formula is to be used to prove the most basic aspects of Analytical Geometry.
 - E.g. Bisect is 2 mid-points
 - Perpendicular is the product of 2 gradients = -1
- Learners should then follow the method laid out below:
 - Select the correct formula from the data sheet
 - Label the ordered pairs using the correct two points, e.g. A and C.
 - \circ $\;$ Substitute correctly and accurately into your chosen formula
 - Perform the arithmetic, preferably *without* a calculator
- Often Analytical Geometry questions *follow on*, (scaffolding). Look out for that, as you might have already proven an aspect above, that you will require for the next sub-question
- Use the diagram more effectively.
- E.g. Highlight the sides you are going to use for proving perpendicular, so you can see clearly which points you are going to use for the substitution.
 - You must answer the question, and remember to conclude, exactly what you were asked to show / prove / conclude. Use wording to do this.

WARM UP OR PRACTICE QUESTIONS NOV 2017 GRADE 11

QUESTION 3

A(-2; -5), B, C and D are the vertices of quadrilateral ABCD such that diagonal AC is perpendicular to diagonal BD at T.

The equation of BTD is given by 2y + x = 18 and AB = 15 units.

TYPICAL GRADE 12 EXAM TYPE QUESTIONS NOVEMBER 2014

QUESTION 3

In the diagram below, a circle with centre M(5; 4) touches the y-axis at N and intersects the x-axis at A and B. PBL and SKL are tangents to the circle where SKL is parallel to the x-axis and P and S are points on the y-axis. LM is drawn.

In the diagram below, E and F respectively are the x- and y-intercepts of the line having equation y = 3x + 8. The line through B(1; 5) making an angle of 45° with EF, as shown below, has x- and y-intercepts A and M respectively.

EXAM KIT 202

NOVEMBER 2015

QUESTION 3

In the diagram below, the line joining Q(-2; -3) and P(a; b), a and b > 0, makes an angle of 45° with the positive x-axis. $QP = 7\sqrt{2}$ units. N(7; 1) is the midpoint of PR and M is the midpoint of QR.

In the diagram below, Q(5; 2) is the centre of a circle that intersects the y-axis at P(0; 6) and S. The tangent APB at P intersects the x-axis at B and makes the angle α with the positive x-axis. R is a point on the circle and PRS = θ .

NOVEMBER 2016

QUESTION 3

In the diagram, A(-7; 2), B, C(6; 3) and D are the vertices of rectangle ABCD. The equation of AD is y = 2x + 16. Line AB cuts the y-axis at G. The x-intercept of line BC is F(p; 0) and the angle of inclination of BC with the positive x-axis is α . The diagonals of the rectangle intersect at M.

In the diagram, M is the centre of the circle passing through T(3; 7), R and S(5; 2). RT is a diameter of the circle. K(a; b) is a point in the 4th quadrant such that KTL is a tangent to the circle at T.

NOVEMBER 2017

QUESTION 3

In the diagram, A, B(-6; -5) and C(8; -4) are points in the Cartesian plane. $F(3; 3\frac{1}{2})$ and G are points on line AC such that AF = FG. E is the x-intercept of AB. v A $F\left(3; 3\frac{1}{2}\right)$ G 0 x E C (8;-4) B (-6; -5) Calculate: 3.1 3.1.1 The equation of AC in the form y = mx + c(4) 3.1.2 The coordinates of G if the equation of BG is 7x - 10y = 8(3) Show by calculation that the coordinates of A is (2; 5). 3.2 (2)(4) 3.3 Prove that EF || BG. ABCD is a parallelogram with D in the first quadrant. Calculate the coordinates of D. (4) 3.4 [17]

In the diagram, P(-4; 5) and K(0; -3) are the end points of the diameter of a circle with centre M. S and R are respectively the x- and y-intercept of the tangent to the circle at P. θ is the inclination of PK with the positive x-axis.

NOVEMBER 2018

QUESTION 3

In the diagram, the equation of the circle with centre F is $(x-3)^2 + (y-1)^2 = r^2$. S(6;5) is a point on the circle with centre F. Another circle with centre G(m; n) in the 4th quadrant touches the circle with centre F, at H such that FH : HG = 1 : 2. The point J lies in the first quadrant such that HJ is a common tangent to both these circles. JK is a tangent to the larger circle at K.

TRIGONOMETRY

3 THE TRIGONOMETRIC RATIOS ON THE CARTESIAN PLANE.

The 3 fractions on the Cartesian plane for the angle θ in <u>standard position</u>				
are:				
$\sin \theta = \frac{y}{r}$	$\cos \theta = \frac{x}{r}$	$\tan \theta = \frac{y}{x}$		

In general:

- Learn your definitions well! (HOW the fractions are formed.)
- <u>*r* is always positive</u>, since *r* represents the distance from the origin to the ordered number pair on the terminal arm of the angle.
- Since x and y are coordinates and represent the position of a point, they can either be negative or positive.
- The signs of x and y depend on the position of the angle: does it lie in quadrant I, II, III or IV?
- While the angles will always be measured in degrees, it is important to remember that the trigonometric ratios (the values of the sin, cos and tan fractions) <u>are always numbers!!!</u>
- THE SIGNS OF THE TRIG RATIOS DEPEND ON THE SIGNS OF *x* and *y*. *Since r is always positive it has no influence on the*
- the sign of the trig ratio.(-;+)(+;+)• Maybe your teacher has taught you the CAST
diagram to help you remember the signs of
the trig ratios in different quadrants
The diagram is a diagram of positives:
it indicates which trig ratio is positive
in which quadrant. The other ones in that
quadrant will be negative.TCCCCC

Quadrant I	Quadrant II	Quadrant III	Quadrant IV
$\sin \theta = \frac{y}{r} = \frac{+}{+} = +$	$\sin \theta = \frac{y}{r} = \frac{+}{+} = +$	$\sin \theta = \frac{y}{r} = \frac{-}{+} = -$	$\sin \theta = \frac{y}{r} = \frac{-}{+} = -$
$\cos \theta = \frac{x}{r} = \frac{+}{+} = +$	$\cos \theta = \frac{x}{r} = \frac{-}{+} = -$	$\cos \theta = \frac{x}{r} = \frac{-}{+} = -$	$\cos \theta = \frac{x}{r} = \frac{+}{+} = +$
$\tan \theta = \frac{y}{x} = \frac{+}{+} = +$	$\tan \theta = \frac{y}{x} = \frac{+}{-} = -$	$\tan \theta = \frac{y}{x} = \frac{-}{-} = +$	$\tan \theta = \frac{y}{x} = \frac{-}{+} = -$
All are positive	Only sin θ is	Only tan θ is	Only cos θ is
(A)	positive (S)	positive (T)	positive (C)

EXAMPLE 1

3.1 APPLICATION OF THESE RATIOS:

One can also calculate the size of θ . How big a rotation did the **terminal arm** make? You go:

$$\tan \theta = \frac{12}{-5} = -\frac{12}{5}$$
 (Now refer back to the diagram of Example 1)
On your calculator:
$$2^{nd} \text{ fn/shift } (+12 \div 5) = 67,4^{\circ} \text{ BUT THIS IS ACTUALLY THE SIZE OF acute angle } \beta$$

SO $\theta = 180^{\circ} - 67,4^{\circ}$
 $\theta = 112,6^{\circ}$ If you have x and y, calculate r.
If you have x and r, calculate y.
If you have y and r, calculate x,

Remember:

 $sin(180^{\circ} - \theta) = + sin \theta$ $sin(180^{\circ} + \theta) = - sin \theta$ $sin(360^{\circ} - \theta) = - sin \theta$ $sin(360^{\circ} + \theta) = + sin \theta$

 $\sin(-\theta) = -\sin\theta$

 $\sin(90^\circ - \theta) = \cos \theta$ $\sin(90^\circ + \theta) = \cos \theta$

- $\cos(180^\circ \theta) = -\cos\theta$ $\cos(180^\circ + \theta) = -\cos\theta$
- $\cos(360^\circ \theta) = +\cos\theta$
- $\cos(360^\circ + \theta) = +\cos\theta$

 $\cos(-\theta) = +\cos\theta$ $\cos(90^\circ - \theta) = \sin\theta$

 $\cos(90^\circ + \theta) = -\sin\theta$

- How did I know it has to be
 + or ?
- How did I know the name of the trig ratio to go into the answer?

S+

A+

• How did I know that the reduced angle has

to be θ ?

 $\tan(180^\circ - \theta) = -\tan\theta$ $\tan(180^\circ + \theta) = +\tan\theta$ $\tan(360^\circ - \theta) = -\tan\theta$ $\tan(360^\circ + \theta) = +\tan\theta$ $\tan(-\theta) = -\tan\theta$

THE SECRET IS: IN YOUR ANSWER THERE WILL ALWAYS BE

- A SIGN
- A TRIG RATIO
- AN ACUTE ANGLE

EXAMPLES IN THE QUADRANTS

sin 361 ∘ terminal arm in Q 1	<u>SIGN</u> : + Because the angle is in Q1	<u>TRIG RATIO:</u> stays sin	ACUTE ANGLE: 361° - 360° = 1°	sin 361° = + sin 1°
sin (-1 °) terminal arm in Q 4	<u>SIGN</u> : - Because the angle is in Q4	TRIG RATIO: stays sin	ACUTE ANGLE: 1°	sin (-1) = -sin 1°

Trig ratio	The terminal side lies in which quadrant?	What is the sign in this quadrant?	Angle as a compound angle in this quadrant.	Final answer
tan 242 $^{\circ}$	Quadrant 3	tan ratio is positive in Q3	(180° + 62°)	tan 242° = + tan 62°
tan 340°	Quadrant 4	tan ratio is negative in Q4	(360° - 20°)	tan 340° = - tan 20°
cos 165 [°]	Quadrant 2	cos ratio is negative in Q2	(180° - 15°)	cos 165° = - cos 15°
cos 395°	Quadrant 1	cos ratio is positive in Q1	Get the acute bit: (395° - 360°)	cos 395° = + cos 35°
tan (-60 [°])	Quadrant 4	tan ratio is negative in Q4	The acute bit is 60°	tan (-60°) = -tan 60°
cos (-71 [°])	Quadrant 4	cos ratio is positive in Q4	The acute bit is 71°	cos (-71°) = + cos 71°

THE ACUTE BIT IS SOMETIMES GIVEN AS A SYMBOL E.G.

 θ OR β OR δ OR α

THE PRINCIPLE STAYS THE SAME:

- SIGN
- TRIG RATIO
- ACUTE ANGLE

	TERMINAL	SIGN?	ACUTE	ANSWER
	ARM?		ANGLE?	
sin (180 $^{\circ}$ – θ)	Q 2	+	θ	$\sin(180^{\circ} - \theta) = +\sin\theta$
tan (180 $^{\circ}$ + θ)	Q3	+	θ	$\tan(180^\circ + \theta) = +\tan\theta$
tan (360 $^{\circ}$ - θ)	Q4	-	θ	$\tan (360^\circ - \theta) = -\tan \theta$
tan (360 $^{\circ}$ + θ)	Q1	+	θ	$\tan (360^\circ + \theta) = +\tan \theta$
cos (- β)	Q4	+	β	$\cos(-\beta) = +\cos\beta$
tan (- eta)	Q4	-	β	an(-eta) = - $ an(-eta)$

WHEN DOES THE NAME OF THE TRIG RATIO CHANGE TO THE NAME OF THE CO-FUNCTION? ONLY WHEN WE HAVE:

	sin (90° – θ), sin (90° +	$-\theta$), cos (90	0° - θ), co	os (90° + θ)
--	---------------------	----------------------	----------------------	------------------------------	----------------------

$\sin(90^\circ - \theta) = \cos \theta$	$\cos(90^\circ - \theta) = \sin\theta$
$\sin(90^{\circ} + \theta) = \cos \theta$	$\cos(90^{\circ} + \theta) = -\sin\theta$

MATHEMATICS

66

SOLUT	TONS			
2.1	a = 2 b = 2			(4)
2.2	45° < <i>x</i> < 135°	OR	<i>x</i> ∈ (45° ; 135°)	(2)
2.3	$-\infty < y < \infty$	OR	$y \in (-\infty;\infty)$; $y \in \mathbb{R}$	(2)
2.4	180°			(2)
2.5	<i>x</i> = 90°			(2)

GRADE 12 TRIGONOMETRY

10 COMPOUND ANGLES AND DOUBLE ANGLES $\sin(A+B) = \sin A \cos B + \cos A \sin B$ $\cos(A+B) = \cos A \cos B - \sin A \sin B$ $\sin(A - B) = \sin A \cos B - \cos A \sin B \qquad \cos(A - B) = \cos A \cos B + \sin A \sin B$ **DOUBLE ANGLES** $cos2\theta = cos^2\theta - sin^2\theta$ $= 2\cos^2\theta - 1$ $= 1 - 2sin^2\theta$ $sin2\theta = 2sin\theta cos\theta$ Found in: 10.1 Identities: substitute all possible double angle formulae, compound angle formulae and squared identities. $tanA = \frac{sinA}{cosA}$ or tanA.cosA = sin A**Quotient identity:** $\sin^2 A + \cos^2 A = 1$ $\sin^2 A = 1 - \cos^2 A$ Squared identities: $\cos^2 A = 1 - \sin^2 A$ Remember sin^2A means $(sin A)^2 = sin A \cdot sin A$ NB: in an identity you will NEVER multiply by the LCD. It is NOT an equation! One often has to factorise in trigonometric identities. $sin^{2}A - cos^{2}A = (sin A - cos A) (sin A + cos A)$ $sin^{2}A = 1 - cos^{2}A = (1 - cosA)(1 + cosA)$ $\cos^2 A = 1 - \sin^2 A = (1 - \sin A) (1 + \sin A)$ $\cos^2 A + 2\cos A \sin A + \sin^2 A = (\cos A + \sin A)(\cos A + \sin A)$ 10.2 Trigonometric equations Finding the General solution Write the equation in simplest form Step 1: Step 2: Q -Quadrants where the solution lies Use CAST diagram R -Reference angle S -Solution: Step 3: Reference angle + k.360° (sin A and cosA) or +k.180° (tanA) $k_{\in}Z$ Finalise the solution. Sometimes you have to divide by the Step 4: coefficient of the angle. Finding the solution in a specific interval. Substitute integers Step 5: into k: k = -3 k = -2 k = -1 k = 0 k = 1 k = 2 k = 3 Which ones fall within the given interval?

```
10.3 Simplify expressions and terms:
EXAMPLE 1: Evaluate without a calculator using a compound angle formula:
\cos 95^{\circ} \sin 5^{\circ} - \sin 95^{\circ} \cos 5^{\circ} = ????,
"Take out" a common factor namely -1:
         cos95°sin5° - sin95°cos5°
        = -1(\sin 95^{\circ}\cos 5^{\circ} - \cos 95^{\circ}\sin 5^{\circ})
         = -1[\sin (95^{\circ} - 5^{\circ})]
        = -1sin90°
         = -1
EXAMPLE 2: Evaluate without a calculator.
sin 391°. sin (-331°) – cos 751°. cos (-1051°)
REMEMBER HUGE NEGATIVE OR POSITIVE (ADD 360° OR SUBTRACT 360°)
391^{\circ} - 360^{\circ} = 31^{\circ}
 -331^{\circ} + 360^{\circ} = 29^{\circ}
751^{\circ} - 720^{\circ} = 31^{\circ}
-1051 + 720^{\circ} = 331^{\circ} then 360^{\circ} - 29^{\circ}
sin 391°. sin (-331°) – cos 751°. cos (-1051°)
= sin31^{\circ}. sin29^{\circ} - cos31^{\circ}. cos29^{\circ}
= -(cos31^{\circ}.cos29^{\circ} - sin31^{\circ}.sin29^{\circ})
=-cos(31+29)
=-cos60^{\circ}
=-\frac{1}{2}
```

TECHNICAL REPORT FINDINGS

Common Errors and misconceptions

Leaners still lack knowledge of reduction formulae .Learners still reduce as follows $cos(90^\circ - x) = cosx$

Learners unable to relate double angles e.g. $sin^215^\circ - cos^215^\circ$ cannot relate to $cos^215^\circ - sin^215^\circ$

Identifying of compound expansion is still a challenge. e.g. $sin(x + 15^\circ) cos 15^\circ -$

 $\cos(x + 15^\circ) \sin 15^\circ$

Learners still cannot differentiate between domain and range.

Properties of quadrilateral still a challenge to learners.

Learners cannot differential and visualize shapes on different plans, vertical plane and horizontal plane.

Learners still not understanding writing something in terms of x. e.g. Writing AK in terms of x

Suggestion of improvement

Emphasis and differentiation to be explained between $90^{\circ} \pm \theta$; $180^{\circ} \pm \theta$ and $360 \pm \theta'$ Give more practise on reduction formulae.

Learners to always check the double angles in the formula sheet

Teachers to ensure that learners revise Grade 11 Trigonometry regularly in Grade 12 year. Learners need exposure to the simplification of expressions containing double and compound angles.

Examples on double angles should include variables for angles as well as specific angle values. Learners should also be required to write down the compound angles when given expansion.

Teachers should not confine the teaching of graphs to sketching .Learners should also be exposed to exercises in which they have to interpret graphs and read off solutions from the graphs.

Teachers to inform learners that Determine AK in terms of x means that AK must be the subject of an expression and that the expression must be in terms of x.

Initially expose learners to numerical values questions on solving 3-D problems This makes it easy for learners to develop strategies on how to solve such questions.

TIPS FOR ANSWERING EXAM QUESTIONS

Read the information given more than once.

Analyse and add more information regarding the information.

Break the question up and make connections

Learners to **always draw a cartesian plane** with ratios and reduction formulae in quadrants to indicate which ratios are positive in which quadrants. The cartesian plane will assist again in showing that the reduction formulae is in which quadrant.

Analyse the question or the diagram

When answering 3D questions highlight the different triangles using different colours.

TIPS ON SOLVING GENERAL SOLUTION

- 1. Simplify the equation using algebraic methods and trigonometric identities
- 2. Determine the reference angle.
- 3. Use **CAST** diagram to determine where the function is positive or negative (Depending on the given information/equation)
- 4. **Restricted values:** Determine the angles that lie within a specified interval by adding or subtracting of the multiples appropriate period.
- 5. General Solution: Determine the angles in the interval $[0^\circ; 360^\circ]$ that satisfy the equation and add multiples of the period to each answer
- 6. Check answers using a calculator

TIPS FOR PROVING IDENTITIES:

- Change all trigonometric ratios to sine and cosine.
- Choose one side of the equation to simplify and show that it is equal to the other side.
- Usually it is better to choose the more complicated side to simplify.
- Sometimes we need to simplify both sides of the equation to show that they are equal.
- A square root sign often indicates that we need to use the square identity.
 - We can also add to the expression to make simplifying easier:
 - Replace 1 with $sin^2\theta + cos^2\theta$.
 - Multiply by 1 in the form of a suitable fraction, for example $\frac{1+\sin\theta}{1+\sin\theta}$

WARM	WARM UP QUESTIONS				
1.SIMP	LIFY WITHOUT A CALCULATOR: special ang	es mixed with other angles that eventually s	implify		
EXAMP	LE				
1 1	$\sin 780^{\circ}$. $\cos 135^{\circ}$. $\tan (420^{\circ})$				
1.1	$\tan(-330^\circ) .\sin 315^\circ .\cos(-150^\circ)$				
		For 1.3 you will have to remember your			
		trig identities.			
1.2	sin 380°. tan 721° . cos 320°				
1.2	$\cos 220^\circ$. $\sin 160^\circ$. $\tan 359^\circ$	$\sin^2\theta + \cos^2\theta = 1$			
		$\sin \theta$			
	sin 160°, cos 380°	$-\tan\theta = \frac{1}{\cos\theta}$			
1.3	$\frac{\sin 100^{\circ} \cdot \cos 500^{\circ}}{\tan 200^{\circ}} + \sin^2 340^{\circ}$				
	tali 200				
	200.250° sin 100° sin 270°				
1.4					
	$\sin 170^\circ$. $\tan(-10^\circ)$. $\cos^2 10^\circ$				
NOTEC					
NOTES					
1.1	FOR 780 AND 420 YOU GO -360 , -360	ETC.			
	FOR -330° AND -150° YOU GO +360°				
1 2	$rop 721^\circ$ you co $2c0^\circ$ $3c0^\circ$				
1.2	FOR 721 FOU GO - 360 , - 360 Try to reduce the angles to the same size acute angle.				
	Try to reduce the angles to the same size acute angle.				
1	Prove that :				
	$1 + \sin y$ $1 - \sin y$ $4 \tan y$				
	$\frac{1}{1 - \sin v} - \frac{1}{1 + \sin v} = \frac{1}{\cos v}$	(<i>LCD</i> !!)			
	$1 - \sin y$ $1 + \sin y$ $\cos y$ State the restrictions on sin y and hones the values of y for which				
	the identity is not wall d (This simply and	, the values of y for which			
	the identity is not valid. (This simply means indicate values of sin y and values				
	of y that will make the denominators equal to $0.$)				
	$I = \frac{1 + \sin y}{1 - \sin y}$				
	$L = \frac{1}{1 - \sin y} - \frac{1}{1 + \sin y}$				
2	Prove that / Bewys dat :				
	$2\sin x(2\cos x - 1)$	$(\cos x + 1)$			
	$\tan 2x + 2\sin x = \frac{2\sin x (2\cos x - 1)}{\cos 2x}$				
3	Prove that / Bewys dat :				
	$\sin 2r - \cos r$				
	$\frac{\sin 2x - \cos x}{\sin x} = \frac{\cos x}{\sin x + 1}$				
	$\sin x - \cos 2x \sin x + 1$				
MATHEMATICS

5 Prove that / Bewys dat :

$$\frac{1}{1 - \cos(180^{\circ} - x)} + \frac{1}{1 - \sin(90^{\circ} - x)} = \frac{2}{\sin^{2} x}$$
a) Simplify:
1) $\frac{\cos(A + B) - \cos(A - B)}{\sin(A + B) - \sin(A - B)}$
2) $\cos(300^{\circ} + \beta) + \cos(300^{\circ} - \beta) - \cos\beta$
c) Evaluate:
1) $\cos 75^{\circ}$ 2) $2 \sin 15^{\circ} \cos 15^{\circ}$ 3) $2 \sin 22.5^{\circ} \cos 22.5^{\circ}$
4) $\cos 165^{\circ}$ 5) $2 \sin 150^{\circ} \cos 330^{\circ}$ 6) $\sin 225^{\circ}$
7) $2 \sin 20^{\circ} \sin 70^{\circ}$ 8) $\cos^{2}15^{\circ} - \sin^{2}15^{\circ}$ 9) $2\cos^{2}15^{\circ} - 1$
10) $1 - 2\sin^{2}15^{\circ}$ 11) $\cos^{2}22\frac{1}{2}^{\circ} - \sin^{2}22\frac{1}{2}^{\circ}$
12) $1 - 2\sin^{2}75^{\circ}$ 13) $\sin 75^{\circ}\cos 75^{\circ}$ 14) $4\sin 15^{\circ}\cos 15$
6 $Simplify / Vereenvoudig :$
a) $\frac{\sin(-63^{\circ}).\sin 27^{\circ}}{\sin 126^{\circ}.\tan 225^{\circ}}$ b) $\frac{\tan 240^{\circ}.\cos 405^{\circ}}{\cos(-30^{\circ})}$
c) $\frac{\cos 300^{\circ}.\sin 140^{\circ}.}{\tan 765^{\circ}.\sin 160^{\circ}.\sin 290^{\circ}}$ d) $\frac{\cos 40^{\circ}}{\sin 25^{\circ}\cos 25^{\circ}}$ e) $\frac{\cos 870^{\circ}.\tan(-1020^{\circ})}{\sin(-270^{\circ})}$
Diagrams
A diagram involving a compound angle formula.
7 Deter mine / Bepaal $\sin(A + B)$ if / indien :
 $\sin A = \frac{4}{5}$; $0^{\circ} \le A \le 90^{\circ}$ & $\cos B = \frac{4}{5}$; $270^{\circ} \le B \le 360^{\circ}$

TYPICAL EXAMINATION QUESTIONS MAY / JUNE 2019

QUESTION 5

5.1	Without using a calculator, write the following expressions in terms of $sin11^{\circ}$:		
	5.1.1	sin191°	(1)
	5.1.2	cos22°	(1)
5.2	Simplify Co	$\cos(x-180^\circ) + \sqrt{2}\sin(x+45^\circ)$ to a single trigonometric ratio.	(5)
5.3	Given: sin	$P + \sin Q = \frac{7}{5}$ and $\hat{P} + \hat{Q} = 90^{\circ}$	
	Without us	ing a calculator, determine the value of $\sin 2P$.	(5)
			[12]

(6)

QUESTION 6

6.2 In the diagram, the graphs of $f(x) = \cos(x - 30^\circ)$ and $g(x) = 2\sin x$ are drawn for the interval $x \in [-180^\circ; 180^\circ]$. A and B are the *x*-intercepts of *f*. The two graphs intersect at C and D, the minimum and maximum turning points respectively of *f*.

	(b)	C	(2)
6.2.2	Determi	The the values of x in the interval $x \in [-180^\circ; 180^\circ]$, for which:	
	(a)	Both graphs are increasing	(2)
	(b)	$f(x+10^{\circ}) > g(x+10^{\circ})$	(2)
6.2.3	Determi	he the range of $y = 2^{2\sin x + 3}$	(5)
			[18]

In the diagram below, CGFB and CGHD are fixed walls that are rectangular in shape and vertical to the horizontal plane FGH. Steel poles erected along FB and HD extend to A and E respectively. ΔACE forms the roof of an entertainment centre.

BC = x, CD = x + 2, $BAC = \theta$, $ACE = 2\theta$ and $ECD = 60^{\circ}$

	7.1.1	AC in terms of x and θ	(2)
	7.1.2	CE in terms of x	(2)
7.2	Show tha	at the area of the roof $\triangle ACE$ is given by $2x(x+2)\cos\theta$.	(3)
7.3	If $\theta = 5$	55° and BC = 12 metres, calculate the length of AE.	(4) [11]

MAY / JUNE 2018

QUESTION 5

5.1	In \triangle MNP, $\hat{N} = 90^{\circ}$ and $\sin M = \frac{15}{17}$. Determine, without using a calculator:		
	5.1.1	tan M	(3)
	5.1.2	The length of NP if $MP = 51$	(2)
5.2	Simplify	to a single term: $\cos(x-360^\circ) \cdot \sin(90^\circ + x) + \cos^2(-x) - 1$	(4)
5.3	Consider:	$\sin(2x + 40^\circ)\cos(x + 30^\circ) - \cos(2x + 40^\circ)\sin(x + 30^\circ)$	
	5.3.1	Write as a single trigonometric term in its simplest form.	(2)
	5.3.2	Determine the general solution of the following equation:	
		$\sin(2x+40^\circ)\cos(x+30^\circ) - \cos(2x+40^\circ)\sin(x+30^\circ) = \cos(2x-20^\circ)$	(7)
	1		[18]

In the diagram, the graphs of $f(x) = -3\sin\frac{x}{2}$ and $g(x) = 2\cos(x - 60^\circ)$ are drawn in the interval $x \in [-180^\circ; 180^\circ]$. T(p;q) is a turning point of g with p < 0.

The captain of a boat at sea, at point Q, notices a lighthouse PM directly north of his position. He determines that the angle of elevation of P, the top of the lighthouse, from Q is θ and the height of the lighthouse is x metres. From point Q the captain sails 12x metres in a direction β degrees east of north to point R. From point R, he notices that the angle of elevation of P is also θ . Q, M and R lie in the same horizontal plane.

7.1 Write QM in terms of x and θ .

(2)

(3)

[9]

- 7.2 Prove that $\tan \theta = \frac{\cos \beta}{6}$. (4)
- 7.3 If $\beta = 40^{\circ}$ and QM = 60 metres, calculate the height of the lighthouse to the nearest metre.

MAY / J	JUNE 2017	
OURG		
QUES	\$110N 5	
5.1	Given: $\sin A = 2p$ and $\cos A = p$	
	5.1.1 Determine the value of tan A.	(2)
	5.1.2 Without using a calculator, determine the value of p , if $A \in [180^\circ; 270^\circ]$.	(3)
5.2	Determine the general solution of $2\sin^2 x - 5\sin x + 2 = 0$	(6)
5.3	5.3.1 Expand $sin(x + 300^\circ)$ using an appropriate compound angle formu	la. (1)
	5.3.2 Without using a calculator, determine the value $sin(x+300^\circ) - cos(x-150^\circ)$.	of (5)
5.4	Prove the identity: $\frac{\tan x + 1}{\sin x \tan x + \cos x} = \sin x + \cos x.$	(5)
5.5	Consider: $\sin x + \cos x = \sqrt{1+k}$	
	5.5.1 Determine k as a single trigonometric ratio.	(3)
	5.5.2 Hence, determine the maximum value of $\sin x + \cos x$.	(2) [27]

79

80

In the diagram are the graphs of $f(x) = \sin 2x$ and $h(x) = \cos(x - 45^\circ)$ for the interval $x \in [-180^\circ; 180^\circ]$. A(-135°; -1) is a minimum point on graph h and C(45°; 1) is a maximum point on both graphs. The two graphs intersect at B, C and D $\left(165^\circ; -\frac{1}{2}\right)$.

A rectangular box with lid ABCD is given in FIGURE (i) below. The lid is opened through 60° to position HKCD, as shown in the FIGURE (ii) below. EF = 12 cm, FG = 6 cm and BG = 8 cm.

From point A an observer spots two boats, B and C, at anchor. The angle of depression of boat B from A is θ . D is a point directly below A and is on the same horizontal plane as B and C. BD = 64 m, AB = 81 m and AC = 87 m.

MAY/ JUNE 2015

QUESTIC	ON 5	
5.1	Given that $\cos \beta = -\frac{1}{\sqrt{5}}$, where $180^{\circ} < \beta < 360^{\circ}$.	
	Determine, with the aid of a sketch and without using a calculator, the value of $\mbox{ sin }\beta.$	(5)
5.2	Determine the value of the following expression:	
	$\frac{\tan(180^\circ - x).\sin(x - 90^\circ)}{4\sin(360^\circ + x)}$	(6)
5.3	If $sin A = p$ and $cos A = q$:	
	5.3.1 Write tan A in terms of <i>p</i> and <i>q</i>	(1)
	Simplify $p^4 - q^4$ to a single trigonometric ratio 5.3.2	(4)
5.4	Consider the identity: $\frac{\cos\theta}{\sin\theta} - \frac{\cos 2\theta}{\sin\theta \cdot \cos\theta} = \tan\theta$	
	5.4.1 Prove the identity.	(5)
	5.4.2 For which value(s) of θ in the interval $0^{\circ} < \theta < 180^{\circ}$ will the identity be undefined?	(2)
5.5	Determine the general solution of 2 sin 2x + 3 sin x = 0	(6) [2 9

EXAM KIT 202

QUESTION 6

EXAM KIT 202

QUESTION 7

Triangle PQS forms a certain area of a park. R is a point on PS and QR divides the area of the park into two triangular parts, as shown below, for a festive event.

EUCLIDEAN GEOMETRY

NOTES TO USE

PROPERTIES OF THE SPECIAL QUADRIALTERALS					
1. THE PARALLE	LOGRAM				
Opposite sides parallel		Opposite sides equal in length			
Opposite angles equal in size	+ • +	Diagonals bisect each other			
2. THE RHOMBL	JS	1			
Opposite sides parallel		Diagonals bisect each other	A A A		
All sides equal in length	£,Ť	Diagonals bisect corner angles			
Opposite angles equal in size	+ •	Diagonals cross at right angles			
3. THE RECTANGLE					
Opposite sides parallel		All angles equal in size (90°)			
Opposite sides equal in length		Diagonals equal in length and bisect each other	X X X		

PAPER 2

4. THE SQUARE			
Opposite sides parallel		All angles equal in size (90°)	
All sides equal in length		Diagonals equal in length and bisect each other	××× ××
Diagonals bisect corner angles	45°	Diagonals cross at right angles	
5. THE TRAPEZIU	M		
One pair of parallel sides			
6. THE KITE			
Adjacent sides equal in length		Diagonals cross at right angles	
One pair of opposite angles equal in size	+	Only one pair of opposite angles is bisected	
Only one diagonal is bisected			

1. The following proofs of theorems are examinable (NB. know them by heart)

- ✓ The line drawn from the centre of a circle perpendicular to a chord bisects the chord; (From Gr.11)
- ✓ The angle subtended by an arc at the centre of a circle is double the size of the angle subtended by the same arc at the circle (on the same side of the chord as the centre); (From Gr.11)
- ✓ The opposite angles of a cyclic quadrilateral are supplementary; (From Gr.11)
- ✓ The angle between the tangent to a circle and the chord drawn from the point of contact is equal to the angle in the alternate segment; (From Gr.11)
- ✓ that a line drawn parallel to one side of a triangle divides the other two sides proportionally; (From Gr.12)
- ✓ Equiangular triangles are similar. (From Gr.12)

2. Corollaries derived from the theorems and axioms are necessary in solving riders:

- ✓ Angles in a semi-circle
- ✓ Equal chords subtend equal angles at the circumference
- ✓ Equal chords subtend equal angles at the centre
- ✓ In equal circles, equal chords subtend equal angles at the circumference
- ✓ In equal circles, equal chords subtend equal angles at the centre.
- ✓ The exterior angle of a cyclic quadrilateral is equal to the interior opposite angle of the quadrilateral.
- ✓ If the exterior angle of a quadrilateral is equal to the interior opposite angle of the quadrilateral, then the quadrilateral is cyclic.
- ✓ Tangents drawn from a common point outside the circle are equal in length.

NB: The theory of quadrilaterals will be integrated into questions in the examination

PROPORTION

REMEMBER THAT:

- $\frac{a}{b} = \frac{c}{d}$ is a proportion statement written in **Fractional** form.
- The statement can also be written ad = bc in **Product** form or
- a: b = c: d in **Colon** form the statement is read : a is to b as c is to d
- ✤ In $\frac{a}{b} = \frac{b}{c}$ *a* is the 1st, *c* is the 3rd proportional and *b* the mean proportional. The mean proportion in product form is $b^2 = ac$
- $If \frac{a}{b} = \frac{c}{d} then \frac{b}{a} = \frac{d}{c}, \frac{a}{c} = \frac{b}{d}, \frac{a+b}{b} = \frac{c+d}{d}(\frac{a}{b}+1) = \frac{c}{d}+1) and \frac{a-b}{b} = \frac{c-d}{d}$

SIMILARITY

A polygon is a closed figure with three or more sides. In a polygon there are as many vertices as there are sides. Triangles and quadrilaterals are three- and four-sided polygons respectively.

Two polygons, having the same number of sides are similar when:

1. All the pairs of corresponding angles are equal

AND

2. All pairs of corresponding sides are in the same proportion

This means that

a) Given 1 and 2, then the polygons are similar

b) Given that two polygons are similar then 1 and 2 are both true

NB: BOTH CONDITIONS MUST HOLD AT THE SAME TIME

1. PROPORTIONALITY Theorem **Converse Theorem** A line drawn parallel to one side of a triangle A line dividing two sides of a triangle divides the other two sides in the same proportionally is parallel to the third side. proportion. А P Q С В В С Given: $\triangle ABC$ with $\frac{AP}{PB} = \frac{AQ}{QC}$ Given: Triangle $\triangle ABC$ with PQ || AB $\mathsf{RTP:} \frac{AP}{PB} = \frac{AQ}{QC}$ RTP: PQ||BC

PAPER 2

If two triangles are equiangular to one another the lengths of their corresponding sides are proportional.

Given: $\triangle ABC$ and $\triangle DEF$ with $\hat{A} = \hat{D}, \hat{B} = \hat{E}$ and $\hat{C} = \hat{F}$ RTP: $\frac{AD}{DE} = \frac{BC}{EF} = \frac{AC}{DF}$

Converse Theorem:

If the corresponding sides of two triangles are proportional then their corresponding angles are equal

3. PYTHAGORAS

Theorem **Converse Theorem** If the square of one side of triangle equals the In a right-angle triangle, the square of the sum of the squares of the other two sides, then hypotenuse is equal to the sum of the squares of the angle contained by these two sides is a right the other two sides. (Pyth) angle. A C В C В Given: If in $\triangle ABC$, $BC^2 = AB^2 + AC^2$ Given: $\triangle ABC$ with $\hat{A} = 90^{\circ}$ $\mathsf{RTP:} BC^2 = AB^2 + AC^2$ RTP: $\hat{A} = 90^{\circ}$

TECHNICAL REPORT

Common errors and misconceptions

Learners writing incorrect reasons or naming angles incorrectly.

Learners struggling to differentiate between quadrilateral and a cyclic quadrilateral. Learners assuming certaing diagrams and information which is not correct e.g assuming that and angle is 90° by just looking at a diagram.

Learners cannot recognise that angles can be named using three alphabets or one alphabet e.g \hat{Q}_2 or $P\hat{Q}W$.

Differentiating between alternate angles and corresponding angle is still a challenge. When proving using converse theorems learners still write the incorrect reasons. Linking of statements is still a challenge.

Learners not showing or writing a construction when proving a theorem. Learners writing incorrect proportions.

Suggestions for improvement

Learners should be encouraged to scrutinise the given information and the diagram for clues about which theorems could be used in answering the question.

Teachers must cover the basic work thoroughly. An explanation of the theorem should be accompanied by showing the relationship in a diagram.

Learners are encouraged to use the list of reasons provided in the Examination Guidelines Teachers to insist that learners name the angles correctly. The fact that learners are naming angles incorrectly in Grade 12 level indicates that this issue has not been dealt with effectively in earlier grades.

Learners should be taught that all statements should be accompanied by reasons. It is essential that the parallel lines be mentioned when stating that corresponding angles are equal, alternating angles are equal, the sum of co – interior angles is 180° or when stating the proportional intercept theorem.

Learner should be **given exercises where the converse of the theorems are used** on solving questions.

Learners should **be taught that all four vertices of a quadrilateral** should lie on the same circumference of a circle to be a cyclic quadrilateral.

Learners should be **discouraged from writing correct statements that are not** related to the solution .No marks are awarded for statements that do not lead to solving the question.

Learners should be forced to use acceptable reasons in Euclidean Geometry. Teachers should explain the **difference between a theorem and its converse**. They should also explain the conditions for which theorems are applicable and when the converse will apply.

Learners should be told that success in answering Euclidean Geometry comes from **regular practice**, starting off with easy and progressing to the difficult.

More time needs to be spent on the teaching of Euclidean Geometry in all grades Learners need to be told that there is **no short – cut to mastering the skills** required in answering questions on Euclidean Geometry. This requires continuous and deliberate practise.

Learners should be taught to refrain from assumptions.

Learners to be **exposed to question** in Euclidean Geometry that includes theorems and converses.

HINTS FOR LEARNERS WHEN ANSWERING A RIDER

Some important points about proof in Geometry

- 1 When solving a geometry rider, one has to have a thorough understanding of the theorems, their conditions and the respective conclusions
- 2 **Read the problem carefully for understanding.** You may need to underline important points and make sure you understand each term in the given and conclusion.
- 3 **There are certain keywords when reading the information** supplied with the rider that should trigger concept images of the geometric tools that you will use
- 4 **Draw the sketch if it is not already drawn**. The sketch need not be accurately drawn but must as close as possible to what is given i.e. lines and angles which are equal must look equal or must appear parallel etc. Also indicate further observations based on previous theorems.
- 5 Indicate on the figure drawn or **given** all the equal lines and angles, lines which are parallel, drawing in circles, measures of angles given if not already indicated in the question. It might be more helpful to have a variety of colour pens or highlighters for this purpose.
- 6 Usually you can see the conclusion before you actually start your **formal proof** of a rider. Don't forget to write the reason for each important statement you make, quoting in brief the theorem or another result as you proceed.
- 7 Sometimes you may need to work backwards, asking yourself what I need to show to prove this **conclusion** (required to be proved) and then see if you can prove that as you reverse.
- 8 As you read this information, **pause**, **fill in the** *translated* **information onto your diagram**, and then continue to read, doing the same until you have used all the information that you were supplied with. If you have done this effectively, you will soon *see* questions that are possible to ask. By the time you get to the actual questions, all the answers should be on your diagram.
- 9 Each paragraph that accompanies a rider has information that needs to be *translated* and indicated on the accompanying diagram using a **simple symbol** system to represent **equal entities**. Once these have been placed on the diagram, it is time to look for the disclosed (but not necessarily mentioned) information. These are usually cyclic quadrilaterals that are present in the figure, and are usually not stated in the information paragraph. Remember, that **four points on a circle determines a cyclic quadrilateral**, just as **three points determines a cyclic triangle**

EXAMPLES ON (DIAGRAM ANALYSIS)

EXAMPLE 1

A, B and C are points on the circumference of circle O. $\hat{A}_1 = 36^\circ$. Calculate \hat{O}_1 and \hat{C}

DIAGRAM ANALYLIS Key Word: Centre O.

<u>Reasoning:</u> O is an angle at the centre. Support theorems are *radii are equal, sum of the angles of a triangle equal to 180°.* Which circle theorem is applicable?

R.T.P	STATEMENT	REASON
(a) $\hat{O}_1 = ?$	$\hat{O}_1 + \hat{A}_1 + \hat{B}_1 = 180^\circ$	
	But $\hat{B}_1 = \hat{A}_1 = 36^\circ$	
	$\hat{O}_1 + 36^\circ + 36^\circ = 180^\circ$	
	$\hat{O}_1 = 108^\circ$	
(b) Ĉ=?	$\hat{C} = \frac{1}{2}\hat{O}_1 = \frac{1}{2}(108^\circ) = 54^\circ$	\angle at centre = 2< at circle

EXAMPLE 2

AB and CD are equal chords of \bigcirc P. PX \perp AB and PY \perp CD.

Prove that PX = PY

Reasoning: We start with the **R.T.P**.: PX and PY is in two different triangles. In circles where the centre and the chords are given with perpendicular lines from the centre we know that the auxiliary theorems are congruency, Pythagoras and that radii are equal. Pythagoras is not an option because no lengths are given. Congruency looks viable as PX and PY are in two different triangles that may be congruent. What do we know about perpendicular lines from the centre to the chord?

R.T.P.	STATEMENT	REASON
$\mathbf{P}\mathbf{X} = \mathbf{P}\mathbf{Y}.$	AX = BX	
	CY = DY	
	But $AB = CD$	
	$\frac{1}{2}AB = \frac{1}{2}CD$	
	\therefore AX = CY	
	In Δ 's APX and CPY	
	AX = CY	
	CP = AP	
	$X_1 = \hat{Y_1}$	
	$\therefore \qquad \Delta APX \equiv \Delta CPY$	
	\therefore PX = PY	

EXAMPLE 3

AO and BO are two radii of \odot O such that $\hat{O} = 90^{\circ}$. AC and BD are two parallel chords. AD and BC intersect in P.

Prove that (a) AP = CP

(b) AC is the diameter of circle APC.

<u>Reasoning</u>: Auxiliary theorem: parallel lines. When will AP be equal to CP? (isosceles triangles). Which circle theorems are applicable in (a) and (b)? When will a line segment be a diameter?

STATEMENT/	REASON
$\hat{C} = \hat{D}$	
$\hat{A} = \hat{D}$	
$\therefore \hat{C} = \hat{A}.$	
$\therefore AP = CP$	
$\hat{O} = 90^{\circ}$	
$\frac{1}{2}\hat{O}=\hat{C}=45^{\circ}$	
$= \hat{A}$	
$\therefore \hat{C} + \hat{A} = 90^{\circ}$	
$\therefore \hat{APC} = 90^{\circ}$	
AC is the diameter of circle APC	
	STATEMENT/ $\hat{C} = \hat{D}$ $\hat{A} = \hat{D}$ $\therefore \hat{C} = \hat{A}.$ $\therefore AP = CP$ $\hat{O} = 90^{\circ}$ $\frac{1}{2}\hat{O} = \hat{C} = 45^{\circ}$ $= \hat{A}$ $\therefore \hat{C} + \hat{A} = 90^{\circ}$ $\therefore A\hat{P}C = 90^{\circ}$ AC is the diameter of circle APC

TYPICAL EXAM QUESTIONS FEB/MARCH 2018

QUESTION 8

8.1 PON is a diameter of the circle centred at O. TM is a tangent to the circle at M, a point on the circle. R is another point on the circle such that OR || PM. NR and MN are drawn. Let $\hat{M}_1 = 66^\circ$.

Calculate, with reasons, the size of EACH of the following angles:

8.1.1	Ŷ	(2)
8.1.2	\hat{M}_2	(2)
8.1.3	\hat{N}_{1}	(1)
8.1.4	Ô ₂	(2)
8.1.5	\hat{N}_2	(3)

9.2	In the diag a common are produce $\hat{A} = x$ and	In the diagram, a smaller circle ABTS and a bigger circle BDRT are given. BT is a common chord. Straight lines STD and ATR are drawn. Chords AS and DR are produced to meet in C, a point outside the two circles. BS and BD are drawn. $\hat{A} = x$ and $\hat{R}_1 = y$.		
	с	$ \begin{array}{c} A \\ S \\ S \\ 3 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ R \\ D \\ \end{array} $		
	9.2.1	Name, giving a reason, another angle equal to:		
		(a) <i>x</i>	(2)	
		(b) <i>y</i>	(2)	
	9.2.2	Prove that SCDB is a cyclic quadrilateral.	(3)	
	9.2.3	It is further given that $\hat{D}_2 = 30^\circ$ and $A\hat{S}T = 100^\circ$. Prove that SD is not a diameter of circle BDS.	(4) [16]	

FEB/ MARCH 2017

QUESTION 8

In the diagram, PQRS is a cyclic quadrilateral. ST is a tangent to the circle at S and chord SR is produced to V. PQ = QR, $\hat{S}_1 = 42^\circ$ and $\hat{S}_2 = 108^\circ$.

In the diagram, PQRS is a quadrilateral with diagonals PR and QS drawn. W is a point on PS. WT is parallel to PQ with T on QS. WV is parallel to PR with V on RS. TV is drawn. PW: WS = 3:2.

10.1 In the diagram, O is the centre of the circle and P is a point on the circumference of the circle. Arc AB subtends AÔB at the centre of the circle and APB at the circumference of the circle.

Use the diagram to prove the theorem that states that $\hat{AOB} = 2\hat{APB}$.

(5)

EXAM KIT 202

10.2 In the diagram, O is the centre of the circle and P, Q, S and R are points on the circle. PQ = QS and $Q\hat{R}S = y$. The tangent at P meets SQ produced at T. OQ intersects PS at A.

10.2.1	Give a reason why $\hat{P}_2 = y$.	(1)
10.2.2	Prove that PQ bisects TPS.	(4)
10.2.3	Determine \hat{POQ} in terms of y.	(2)
10.2.4	Prove that PT is a tangent to the circle that passes through points P, O and A.	(2)
10.2.5	Prove that $\hat{OAP} = 90^{\circ}$.	(5) [19]

In the diagram, LK is a diameter of the circle with centre P. RNS is a tangent to the circle at N. T is a point on NK and TP \perp KL. PLN = x.

FEB/ MARCH 2016 **QUESTION 8** In the diagram below, tangent KT to the circle at K is parallel to the chord NM. 8.1 NT cuts the circle at L. ΔKML is drawn. $\hat{M}_2 = 40^\circ$ and $M\hat{K}T = 84^\circ$. K 84 2 N L 40° M Determine, giving reasons, the size of: Â2 8.1.1 (2) \hat{N}_1 8.1.2 (3) Ť 8.1.3 (2) \hat{L}_2 8.1.4 (2) \hat{L}_1 8.1.5 (1)

8.2 In the diagram below, AB and DC are chords of a circle. E is a point on AB such that BCDE is a parallelogram. $D\hat{E}B = 108^{\circ}$ and $D\hat{A}E = 2x + 40^{\circ}$.

Calculate, giving reasons, the value of x.

(5) [1**5**]

EXAM KIT 202

In the diagram below, VR is a diameter of a circle with centre O. S is any point on the circumference. P is the midpoint of RS. The circle with RS as diameter cuts 10.2 VR at T. ST, OP and SV are drawn. 0 10.2.1 Why is $OP \perp PS$? (1)10.2.2 Prove that $\Delta ROP || | \Delta RVS$. (4) 10.2.3 Prove that $\Delta RVS || | \Delta RST$. (3) Prove that $ST^2 = VT \cdot TR$. 10.2.4 (6) [21]

FEB/ MARCH 2015

QUESTION 7

9.1 Complete the statement of the following theorem:

The exterior angle of a cyclic quadrilateral is equal to ...

(1)

9.2 In the diagram below the circle with centre O passes through points S, T and V. PR is a tangent to the circle at T. VS, ST and VT are joined.

Given below is the partially completed proof of the theorem that states that $V\hat{T}R = \hat{S}$. Using the above diagram, complete the proof of the theorem on DIAGRAM SHEET 3.

Construction: Draw diameter TC and join CV.

Statement	Reason	
Let: $V\hat{T}R = \hat{T}_1 =$	x	
$\hat{\mathbf{V}}_1 + \hat{\mathbf{V}}_2 = \dots$		
$\hat{\mathrm{T}}_2 = 90^{\circ} - x$		
$\ddot{\mathbf{C}}$ =	Sum of the angles of a triangle	
$\therefore \hat{\mathbf{S}} = x$		
\therefore VTR = Ŝ		

9.3	In the fi produced circle at	gure, TRSW is a cyclic quadrilateral with TW = WS. RT and RS are d to meet tangent VWZ at V and Z respectively. PRQ is a tangent to the R. RW is joined. $\hat{R}_2 = 30^\circ$ and $\hat{R}_4 = 50^\circ$.	
	v	T T 1 1 1 1 2 30° 34° 50° 4 3 2 4 3 2 4 50° 2 4 50° 0 2 4 4 50° 0 2 4 4 50° 0 2 4 4 3 2 4 4 4 3 2 1 4 4 3 2 1 4 4 3 2 1 4 4 3 2 1 4 4 3 2 1 2 3 4 4 3 2 1 2 3 4 4 4 3 2 1 2 2 3 4 4 3 2 1 2 2 3 4 4 3 2 1 2 2 2 2 3 4 4 3 2 2 2 2 2 2 2 2	
	9.3.1	Give a reason why $\hat{R}_3 = 30^\circ$.	(1)
	9.3.2	State, with reasons, TWO other angles equal to 30°.	(3)
	9.3.3	Determine, with reasons, the size of:	
		(a) \hat{S}_2	(3)
		(b) Ŷ	(4)
	9.3.4	Prove that $WR^2 = RV \times RS$.	(5) [22]

(4) [8]

QUESTION 10

In ΔTRM , $\hat{M} = 90^{\circ}$. NP is drawn parallel to TR with N on TM and P on RM. It is further given that RT = 3PN.

10.1 Give reasons for the statements below. Use DIAGRAM SHEET 5.

	Statement	Reason	
	In $\triangle PNM$ and $\triangle RTM$	4 :	
10.1.1	$\hat{N}_1 = \hat{T}$		
	M is common		
10.1.2	∴ ΔPNM ΔRTM		

10.3 Show that $RN^2 - PN^2 = 2RP^2$.

10.2

123

OCT/NOV 2019

QUESTION 8

8.1 In the diagram, PQRS is a cyclic quadrilateral. Chord RS is produced to T. K is a point on RS and W is a point on the circle such that QRKW is a parallelogram. PS and QW intersect at U. $P\hat{S}T = 136^{\circ}$ and $\hat{Q}_1 = 100^{\circ}$.

EXAM KIT 202

In the diagram, O is the centre of the circle. ST is a tangent to the circle at T. M and P are points on the circle such that TM = MP. OT, OP and TP are drawn. Let $\hat{O}_1 = x$.

10.1 In the diagram, $\triangle ABC$ is drawn. D is a point on AB and E is a point on AC such that DE || BC. BE and DC are drawn.

	STATISTICS	
MB	ER 2018 GRADE 11	
QUES	STION/VRAAG 1	
	4 12 13 16 17 18 20 22 22 25	
1.1	4 minutes/ minute	✓ answer/ antwoord
1.2	Mean/gemiddeld = $\frac{169}{10}$ = 16,9	(1) $\checkmark 169$ \checkmark answer/ antwoord (2)
1.3	Standard deviation/ Standardafwyking = 5,79	(2) ✓ answer/ antwoord (1)
1.4	(16,9-2×5,79;16,9+2×5,79) (5,32;28,48)	$\sqrt[4]{x-2\sigma}$ $\sqrt[4]{x+2\sigma}$
	:. 1 member of the team completed the obstacle race outside of 2 standard deviations of the mean./	✓ answer/ antwoord
	1 lid van die span het die hundernisbaan buite twee standardafwykings van die gemiddeld voltooi.	(3)
.5	$\frac{169 + x + 5}{20} = 18$ x = 18 × 20 - 174 x = 186	✓ $169 + x + 5$ ✓ dividing by 20/ deel deur 20 ✓ answer/ antwoord (3)
		[10]

QUESTION/VRAAG 2

PAPER 2

GRADE 11 NOVEMBER 2017	
OUESTION/VRAAG 1	
10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56	58 60 62 64 66
1.1.1 min = 12	✓ min + max
$Q_1 = 17$	\checkmark median, Q_1 and/en Q_3
median / mediaan = 30	(2)
$Q_3 = 38$	
$\frac{\max = 65}{1.1.2} IOR = O_2 - O_1$	✓ answer/antw
= 38 - 17	(1)
=21	
1.1.3 Skewed to the right OR positively skewed	✓ answer/antw
Skeef na regs OF positief skeef	(1)
5 8 10 17 20 29 32 48 50 50 63	<i>Y</i> 107
$1.2.1$ $(G_{1}, 1, 1, 1, 1, 2, 39 + y)$	
Mean/Gemiddeld = $\frac{13}{13}$	100
$41 = \frac{439 + y}{1}$	$\checkmark 41 = \frac{439 + y}{12}$
13	15
439 + y = 533	✓ answer/antw
y = 94	(2) √ answer/antw
1.2.2 0 - 50,94	(1)
	· · · · · ·
1.2.3 $41 \times 13 = 533$	√108
$6 \times 18 = 108$	✓ 533+108=641
522 - 109 - 641	✓ answer/antw
$\frac{333+108}{19} = \frac{641}{19} = 33,74$	(3) [10]
19 19	[-•]

QUE	STION/VRAAG 1						
	Monthly income (in rands) Maandelikse inkomste (in rand)	9 000	13 500	15 000	16 500	17 000	20 00
N	Monthly repayment (in rands) Maandelikse paaiement (in rand)	2 000	3 000	3 500	5 200	5 500	6 00
1.1	<i>a</i> = -1946,88			✓ $a = -19$	46,88		
	b = 0,41			✓ $b = 0,41$			
	$\hat{y} = -1946,88 + 0,41x$			✓ equation	(2)		
1.2	Monthly repayment ≈ R3 727,16 Maandelikse paaiement ≈ R3 727,16	culator)	√√ answe	(2)			
	OR						
	$\hat{v} = -1946.88 + 0.41(14000)$			✓ substitut	tion		
	≈ R3 793,12			✓ answer			
				(2)			
1.3	r = 0.95		√ answer				
1.4	Not to spend P0 000 per month beas	int			(1)		
1.4	$(18\ 000\ :\ 9\ 000)$ lies very far from the	iares	√√ answe	r			
	regression line. OR D				(2)		
	Spandeer nie R9 000 per maand nie,	ount					
	(18 000 ; 9 000) lê baie ver van die k						
	regressieiyn. OF D					[8]	
						[9]	

PAPER 2

NOVEMBER 2018 QUESTION/VRAAG1 1.1.1 140 items ✓ answer (1)1.1.2 Modal class/modale klas: $20 < x \le 30$ minutes ✓ answer OR/OF (1)✓ answer $20 \le x \le 30$ minutes (1)1.1.3 Number of minutes taken = 20 minutes ✓ answer (1)140-126 [Accept: 124 to 128] √ 126 1.1.4 14 orders (12 to 16) ✓ answer (2)Answer only: Full marks 75th percentile is at 105 items 1.1.5 √ 105 =37 minutes [accept 36 - 38 minutes] ✓ answer Answer only: Full marks (2)1.1.6 Lower quartile is at 35 items Answer only: =21,5 min [accept 21 - 23 min] \checkmark lower quartile (Q₁) Full marks IQR = 37 - 21,5✓ answer = 15,5 min [accept 13 - 17 min] (2)70 75 80 35 80 100 100 105 90 105 110 110 115 120 125 $\overline{x} = \frac{\overline{1420}}{\overline{}}$ √ 1420 1.2.1(a)Answer only: Full marks 15 ✓ answer = R94,666... = R94,67(2)1.2.1(b) √√ answer $\sigma = R22,691... = R22,69$ (2)They both collected the same (equal) amount in 1.2.2(a)✓ answer tips, i.e. R1 420 over the 15-day period. Hulle albei het dieselfde bedrag met fooitjies (1)ontvang, nl. R1 420 oor die 15 dae-tydperk 1.2.2(b) Mary's standard deviation is smaller than Reggie's which suggests that there was greater variation in the amount of tips that Reggie collected each day ✓ explanation compared to the number of tips that Mary collected each day. Marie se standaardafwyking is kleiner as Reggie s'n wat beteken dat daar groter variasie/verspreiding in die fooitjies was wat Reggie elke dag ontvang (1)het in vergelyking met die getal fooitjies wat Marie elke dag ontvang het. [15]

QUESTION/VRAAG 2

2.1	251 km/h	✓ answer (1)
2.2.1	r = 0,52 OR C	✓ answer (1)
2.2.2	The points are fairly scattered and the least squares regression line is increasing.	✓ reason (1)
	Die punte is redelik verspreid en die kleinstekwadrate- regressielyn neem toe.	
2.3	There is a weak positive relation hence the height could have an influence	✓ answer (1)
	Daar is 'n swak positiewe verband, tog kan die lengte 'n invloed hê.	(-)
	OR/OF	
	player will influence his/her tennis serve speed.	✓ answer
	Daar is geen duidelike bewys dat die lengte van die speler sy/haar afslaanspoed kan beïnvloed nie.	(1)
	OR/OF	
	There is no conclusive evidence that a taller person will serve faster than a shorter person.	√ answer
	Daar is geen duidelike bewys dat 'n langer speler vinniger sal afslaan as 'n korter een nie.	(1)

 2.4 For (0; 27,07), it means that the player has a height of 0 m but can serve at a speed of 27,07 km/h. It is impossible for a person to have a height of 0 m. (0; 27,07) beteken dat 'n speler 'n lengte van 0 m kan hê en teen 'n spoed van 27,07 km/h kan afslaan. Dit is onmoontlik om 'n lengte van 0 m te hê. OR/OF This means that the player does not exist and therefore cannot serve and have a serve speed. Dit beteken dat die speler nie bestaan nie en daarom nie kan afslaan en 'n afslaanspoed hê nie. 		-		
OR/OF This means that the player does not exist and therefore cannot serve and have a serve speed. ✓ explanation Dit beteken dat die speler nie bestaan nie en daarom nie kan afslaan en 'n afslaanspoed hê nie. (1)	2.4	For (0; 27,07), it means that the player has a height of 0 m but can serve at a speed of 27,07 km/h. It is impossible for a person to have a height of 0 m. (0; 27,07) beteken dat 'n speler 'n lengte van 0 m kan hê en teen 'n spoed van 27,07 km/h kan afslaan. Dit is	✓ explanation	(1)
nie kan afslaan en 'n afslaanspoed hê nie.		OR/OF This means that the player does not exist and therefore cannot serve and have a serve speed. Dit beteken dat die speler nie bestaan nie en daarom	✓ explanation	(1)
L		nie kan afslaan en 'n afslaanspoed hê nie.		[5]

NOVEMBER 2017

QUESTION/VRAAG1

Time for 100 m sprint (in seconds) <i>Tyd vir 100 m-naelloop (in sekondes)</i>	10,1	10,2	10,5	10,9	11	11,1	11,2	11,5	12	12	12,2	12,5
Distance of best long jump (in metres) Afstand van beste sprong in verspring (in meter)	8	7,7	7,6	7,3	7,6	7,2	6,8	7	6,6	6,3	6,8	6,4

	b = -0,642 = -0,64	\checkmark value of b
		(3)
1.2	y = 14,34 - 0,64(11,7)	✓ substitution correctly
	= 6.85	✓ answer
	OR/OF	(2)
	v = 6.83 (calculator / sakrekengar)	√√answer
	y 0,05 (calculator / sum exemutin)	(2)
1.3	The gradient increases / Die gradient neem toe	✓ increases/neem toe
	The point (12,3 ; 7,6) lies some distance above the current data.	✓ reasoning in words/
	/Die punt (12,3 ; 7,6) lê bokant die huidige data.	redenasie in woorde
		(2)
		[7]

PAPER 2

QUESTIC	ON/VR	AAG 2	!											
	12 13 13 14 14 16 17 18 18 1											20		
	21	21	22	22	23	24	25	27	29	30	36		-	
211											450			1
2.1.1	$\overline{x} = \frac{4}{2}$ $\overline{x} = 20$	7 <u>2</u> 23 0,52 se	econds	/ seko	nde					✓ ✓	$\frac{472}{23}$	r		(2)
2.1.2	$Q_{1} = 16$ $Q_{3} = 24$ $IQR/IKO = Q_{3} - Q_{1}$ $= 24 - 16 = 8$											r		(3)
2.2	20,52 + 5,94 = 26,46 $\therefore > 26,46$ $\therefore 4 \text{ girls/dogters}$										 ✓ 26,46 ✓ answer (2) 			
2.3	•								•	* * *	whisk $Q_1 = 1$ $Q_2 = 2$	ers en 16 & Q 20	ding at 12 Q3 = 24 (1	2 & 36 box)
2.4.1	12 14 16 18 20 22 24 26 28 30 3 1 Circle (Maining 1 <th colspan="5">6 (3</th>									6 (3				
2.4.1	Girls	Meisi	es							ľ	answe	r		(1)
2.4.2	Five-r None 5 girls minim 5 meis minim	of the comp num tir sies vo	boys / leted in ne take ltooi in	Nie ee n less t en by t minde	boys: <i>m van</i> than 1 he boy <i>er as 1</i>	die se 5 secon ys. 15 seko	21 ; 23 uns ni nds wh ondes, het	e nich wa wat die	5 ; 38) as the e	* *	answe reasor	ar Vrede		(2)
	mmm	amiyu	is wat	410 30		neem								[13]

NOVEMBER 2016

QUESTION/VRAAG1

Distance from the store in km Afstand vanaf die winkel in km	1	2	3	4	5	7	8	10
Average number of times shopped per week								
Gemiddelde aantal keer wat kopers	12	10	7	7	6	2	3	2
die winkel per week besoek								

	1	
1.1	Strong/Sterk	\checkmark
		(1)
1.2	-0,95 (-0,9462)	\checkmark
		(1)
1.3	a = 11,71 (11,7132)	\checkmark value of <i>a</i>
	b = -1,12 (-1,1176)	\checkmark value of b
	$\hat{v} = -1.12x + 11.71$	✓ equation/vgl
		(3)
1.4	$\hat{v} = -1.12(6) + 11.71$	✓ substitution
	- 5 times	✓ answer
	- 5 unies	(2)
1.5	On scatter plot/ <i>Op spreidiagram</i>	 ✓ A line close to any 2 of the following points: (5;6) or (10; ¹/₂) or (6;5) or (0;11,7)
		(2) [0]
		[2]

PAPER 2

1.2.1	$\hat{y} = 154,60 + 77,13(18)$	✓ subst
	$= 1.542.94 \approx 1.500 \text{ kJ}$	✓ answ rounded
		off correctly/
		antw korrek
		afgerond
		(2)
1.3	(8;300)	✓ answ/antw
		(1)
1.4	$r = 0.9520 \approx 0.95$	$\checkmark \checkmark$ answ/antw
		(2)
1.5	very strong positive relationship/	✓ strong/ sterk
	baie sterk positiewe verband	(1)
		[11]

QUESTION/VRAAG 2 Sum of the values on uppermost faces/ Frequency/ Som van die waardes op Frekwensie boonste vlakke 0 2 3 3 4 2 5 4 6 4 7 8 8 3 9 2 2 10 11 1 12 1 mean/gemiddelde = $\frac{2(0) + 3(3) + 4(2) + \dots + 12(1)}{30} = \frac{202}{30}$ 2.1√202 30 30 = 6,73✓ answ/antw (2)median/mediaan = $\frac{T_{15} + T_{16}}{2} = \frac{7+7}{2} = 7$ 2.2 √√ answ/*antw* (2)2.3 $SD/SA = 2,264... \approx 2,26$ ✓✓ answ/*antw* (2)(6,73 - 2,26; 6,73 + 2,26)2.4 = (4,47; 8,99) ✓lower boundary ✓ upper boundary $\therefore 4 + 4 + 8 + 3 = 19$ times/keer ✓ answ/antw (3) [9]

ANALYTICAL GEOMETRY SOLUTIONS NOVEMBER 2019 GRADE 11		
QUES	TION/VRAAG 3	
	B 15 C T T A(-2;-5)	\xrightarrow{x}
3.1	$BD y = -\frac{1}{2}x + 9$	✓ Standard form/ <i>vorm</i>
	$\therefore m_{BD} = -\frac{1}{2}$ $\therefore m_{AC} = 2$	✓ answ/antw (2)
3.2	$y - y_1 = m(x - x_1)$ y - (-5) = 2(x - (-2)) y = 2x - 1	✓ subst $(-2; -5)$ ✓ answ/antw (2)
3.3	$2x - 1 = -\frac{1}{2}x + 9$	$\checkmark 2x - 1 = -\frac{1}{2}x + 9$
	$\begin{array}{c} -x = 10\\ 2\\ x = 4 \end{array}$	$\checkmark x = 4$
	y = 2(4) - 1 $y = 7$	$\checkmark y = 7$ (3)
	T(4;7)	

3.4.1	$4 = \frac{-2+x}{2}$ 8 = -2+x x = 10	$\checkmark x = 10$	
	$7 = \frac{-5+y}{2}$ $14 = -5+y$ $y = 19$ $C(10:19)$	✓ <i>y</i> = 19	(2)
3.4.2	$AT = \sqrt{(4 - (-2))^2 + (7 - (-5))^2}$ = $\sqrt{180}$ = $6\sqrt{5}$	 ✓ subst. in distance/afstand form. ✓ answer/antw 	
	$BT^{2} + AT^{2} = AB^{2} \qquad (Pythagoras)$ $BT = \sqrt{15^{2} - (\sqrt{180})^{2}}$ $= 3\sqrt{5}$	✓ subst. in pyth ✓ answer/ <i>antw</i>	(4)
3.4.3	BC is the diameter/ <i>middellyn</i> [subt. right / ondersp. reg \angle] or/c [conv. \angle ⁵ in semi-circle/omgk. \angle ⁵ in halfsirkal]	√ S	
	Radius = $\frac{15}{2}$ = 7,5 units/ eenh.	√ answ/antw	(2) [15]

4.3	$\tan \alpha = m_{AB}$ $\tan \alpha = \frac{5}{2}$	$\checkmark \tan \alpha = \frac{5}{3}$
	$\alpha = 59^{\circ}$	$\checkmark \alpha = 59^{\circ}$ (2)
4.4	76°+59°=135° [ext∠of∆] BCX =135°	✓ 135°
	$\tan 135^\circ = m_{BC}$ $m_{BC} = -1 = m_{//}$	✓ $\tan 135^\circ = m_{BC}$ ✓ $\operatorname{answer}/\operatorname{antw}$
	y - (-3) = -1(x - (-5)) y = -x - 8	✓ subst $(-3; -5)$ ✓ answer/antw (5)

NOVEMBER 2014 QUESTION/VRAAG 3 $3 \frac{1}{9} \frac{y}{\sqrt{N(5;4)}}$ $N \frac{1}{N(5;4)}$			
QUESTION//RAAG3 $3 = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1$	NOVEM	BER 2014	
QUESTION/PRAG 3 s y N M(5;4) N M(5;4) N M(5;4) N M(5;4) N M(5;4) N M(5;4) N N Sint r = MN = 5 X Y answer/antw (1) 3.2 (x - 5) ² + (y - 4) ² = 25 (x - 5) ² + (0 - 4) ² = 25 (x - 5) ² + 16 = 25 x ² - 10x + 15 = 16 = 25 (x - 5) ² + 16 = 25 x ² - 10x + 16 = 0 OR/OF (x - 5) ² = 10 (x - 5) ² = 3 .:x = 8 oriofx = 2 .:x = 8 oriofx = 2 .:A(2;0) .:A(2;0) 3.4.1 m _{MB} = $\frac{4 - 0}{5 - 8}$ = $\frac{4}{3}$ - Mad B m from Y m _{MB} = $\frac{4}{3}$ (2) (2)			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	QUEST	ION/VRAAG 3	
3.1 $r = MN = 5$ \checkmark answer/antw (1) 3.2 $(x-5)^2 + (y-4)^2 = 25$ \checkmark equation/vgl (1) 3.3 $A(x; 0)$ \checkmark equation/vgl (1) 3.3 $A(x; 0)$ \checkmark substitute into eq/vervang in vgl $y = 0$ $x^2 - 10x + 25 + 16 = 25$ $(x-5)^2 + 16 = 25$ $(x-5)^2 + 16 = 25$ \checkmark standard form/standardvorm or $x^2 - 10x + 16 = 0$ OR/OF $(x-5)^2 = 9$ \checkmark standard form/standardvorm or perfect square $(x-8)(x-2) = 0$ $(x-5) = \pm 3$ \therefore $x = 8 \text{ or/of } x = 2$ \therefore $x = 8 \text{ or/of } x = 2$ \therefore $x = 8 \text{ or/of } x = 2$ \therefore $A(2; 0)$ \therefore $A(2; 0)$ \therefore $A(2; 0)$ \checkmark subst M and B 3.4.1 $m_{MB} = \frac{4-0}{5-8}$ \checkmark subst M and B into form/vervang $= -\frac{4}{3}$ \checkmark $M_{MB} = -\frac{4}{3}$ (2)	_	N $M(5;4)$ B P	L
3.2 $(x-5)^2 + (y-4)^2 = 25$ \checkmark equation/vgl 3.3 $A(x; 0)$ (1) 3.3 $A(x; 0)$ \checkmark substitute into eq/vervang in vgl $x^2 - 10x + 25 + 16 = 25$ $(x-5)^2 + 16 = 25$ \checkmark substitute into eq/vervang in vgl $x^2 - 10x + 16 = 0$ OR/OF $(x-5)^2 = 9$ \checkmark standard form/standardvorm or perfect square form/kwadr vorm $\therefore x = 8 \text{ or/of } x = 2$ $\therefore x = 8 \text{ or/of } x = 2$ $\therefore x = 8 \text{ or/of } x = 2$ $\therefore x = 8 \text{ or/of } x = 2$ $\therefore A(2; 0)$ $\therefore A(2; 0)$ $\therefore A(2; 0)$ \checkmark subst M and B into form/vervang M and B into form/vervang M and B in form $3.4.1$ $m_{\text{MB}} = \frac{4-0}{5-8}$ \checkmark subst M and B in form \checkmark $m_{\text{MB}} = -\frac{4}{3}$ (2)	3.1	r = MN = 5	✓ answer/antw (1)
3.3 $A(x; 0)$ \checkmark substitute into eq/ $(x-5)^2 + (0-4)^2 = 25$ $x^2 - 10x + 25 + 16 = 25$ $x^2 - 10x + 16 = 0$ OR/OF $(x-5)^2 + 16 = 25$ $x^2 - 10x + 16 = 0$ OR/OF $(x-5)^2 = 9$ $(x-8)(x-2) = 0$ $(x-5) = \pm 3$ $\therefore x = 8 \text{ or/of } x = 2$ $\therefore A(2; 0)$ \checkmark substitute into eq/ vervang in vgl $y = 0$ $\therefore x = 8 \text{ or/of } x = 2$ $\therefore A(2; 0)$ $\therefore x = 8 \text{ or/of } x = 2$ $\therefore A(2; 0)$ \checkmark substitute into eq/ vervang in vgl $y = 0$ $3.4.1$ $m_{MB} = \frac{4-0}{5-8}$ $= -\frac{4}{3}$ \checkmark subst M and B into form/vervang M and B in form \checkmark $m_{MB} = -\frac{4}{3}$	3.2	$(x-5)^2 + (y-4)^2 = 25$	✓ equation/vgl (1)
	3.3	$A(x; 0) (x-5)2 + (0-4)2 = 25 x2 - 10x + 25 + 16 = 25 x2 - 10x + 16 = 0 (x-8)(x-2) = 0 \therefore x = 8 \text{ or/of } x = 2 \therefore A(2; 0) M_{MB} = \frac{4-0}{5-8} = -\frac{4}{3}$ $(x-5)2 + (0-4)2 = 25 (x-5)2 + 16 = 25 (x-5)2 = 9 (x-5) = \pm 3 \therefore x = 8 \text{ or/of } x = 2 \therefore A(2; 0) M_{MB} = \frac{4-0}{5-8} = -\frac{4}{3}$	✓ substitute into eq/ vervang in vgl y = 0 ✓ standard form/ standaardvorm or perfect square form/kwadr vorm ✓ answer/antw (3) ✓ subst M and B into form/vervang M and B in form ✓ $m_{MB} = -\frac{4}{3}$ (2)
	L	I	

3.4.2	$m_{\rm MB} \times m_{\rm PB} = -1$ (tangent \perp radius/ $rkl \perp radius$)	\checkmark $m_{\rm MB} \times m_{\rm PB} = -1$
	$m_{\rm PB} = \frac{3}{4}$	$\checkmark m_{\rm PB} = \frac{3}{1}$
	$y = \frac{3}{4}x + c$ OR/OF $y - y_1 = \frac{3}{4}(x - x_1)$	4
	$0 = \frac{3}{4} (8) + c \qquad \qquad y - 0 = \frac{3}{4} (x - 8)$	
	$y = \frac{3}{4}x - 6$ $y = \frac{3}{4}x - 6$	✓ equation/vgl
3.5	$y_K = y_M + r = 4 + 5$ y = 9	✓ 9 ✓ equation/vgl (2)
3.6	At/By L:	(-)
	$\frac{5}{4}x - 6 = 9$ 3x - 24 = 36 3x = 60	 ✓ equating simultaneously ✓ simplification
	x = 20 $\therefore L(20; 9)$	(2)
5.1	$ \begin{array}{l} \text{L(20; 9)} \\ \text{ML} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} & \text{OR/OF} \text{ML} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \\ = \sqrt{(20 - 5)^2 + (9 - 4)^2} & = \sqrt{(15)^2 + (5)^2} \\ = \sqrt{225 + 25} & = \sqrt{(5)^2 (9 + 1)} \\ = \sqrt{250} & or / of 5\sqrt{10} & = \sqrt{250} & or / of 5\sqrt{10} \end{array} $	 ✓ correct subst into distance formula/ korrekte subst in afstand- formule ✓ answer in surd form/antw in wortelvorm (2)
3.8	MK ⊥ KL OR/OF MKL = 90° (radius ⊥ tangent/radius ⊥ rkl) ∴ ML is a diameter as it subtends a right angle/ML is middellyn $r = \frac{ML}{2} = \frac{\sqrt{250}}{2} = \sqrt{\frac{125}{2}}$ or 7,91 Centre of circle = midpoint of ML/Midpt van sirkel = midpt v ML $x = \frac{5+20}{2} = \frac{25}{2} = 12,5$ $y = \frac{4+9}{2} = \frac{13}{2} = 6,5$ Centre/midpt (125+65)	✓ S ✓ value of/waarde van r ✓ $x = 12,5$ ✓ $y = 6,5$
	Equation of the circle KLM /Vgl van sirkel KLM: $\therefore (x - 12,5)^2 + (y - 6,5)^2 = \frac{250}{4} = \frac{125}{2} = 62,5$	✓ answer in correct form/ antw in korrekte vorm
	OR/OF	(5)

√ S $MK \perp KL \quad OR/OF \quad MKL = 90^{\circ}$ (radius \perp tangent/radius $\perp rkl$) ... ML is a diameter as it subtends a right angle/ML is middellyn Centre of circle = midpoint of ML/Midpt van sirkel = midpt v ML $x = \frac{5+20}{2} = \frac{25}{2} = 12,5$ $y = \frac{4+9}{2} = \frac{13}{2} = 6,5$ $\checkmark x = 12,5$ v = 6.5Centre/midpt: (12,5; 6,5) Equation of the circle KLM /Vgl van sirkel KLM: $(x-12,5)^2 + (y-6,5)^2 = r^2$ √ value subst (5; 4): $(5-12,5)^2 + (4-6,5)^2 = r^2$ of/waarde van r^2 $62.5 = r^2$ $\therefore (x-12,5)^2 + (y-6,5)^2 = \frac{250}{4} = \frac{125}{2} = 62,5$ ✓ answer in correct form/antw in OR/OF korrekte vorm (5)By symmetry about LM/deur simmetrie om LM: **MK** \perp **KL OR/OF** $\hat{$ **MKL** = 90° (radius \perp tangent/radius \perp rkl) ✓ S ... ML is a diameter as it subtends a right angle/ML is middellyn ML is a diameter /ML is 'n middellyn ✓ value $r = \frac{\text{ML}}{2} = \frac{\sqrt{250}}{2} = \sqrt{\frac{125}{2}}$ or /of 7,91 of/waarde van r Centre of circle = midpoint of ML/Midpt van sirkel = midpt v ML $x = \frac{5+20}{2} = \frac{25}{2} = 12,5 \qquad \qquad y = \frac{4+9}{2} = \frac{13}{2} = 6,5$ ✓ x = 12,5 $\checkmark y = 6.5$ Centre/midpt: (12,5; 6,5) Equation of the circle KLM /Vgl van sirkel KLM: ✓ answer in $\therefore \quad (x-12,5)^2 + (y-6,5)^2 = \frac{250}{4} = \frac{125}{2} = 62,5$ correct form/antw in korrekte vorm (5) [21]

QUESTION/VRAAG 4	
D 45° M E 0	B(1;5)
4.1 $y = 0: 3x + 8 = 0$ $x = -\frac{8}{3}$ $\therefore E\left(-2\frac{2}{3};0\right) \text{ OR/OF } E\left(-\frac{8}{3};0\right)$ 4.2 $\tan D\hat{E}O = m_{DE} = 3$ $\therefore D\hat{E}O = 71,565 = 71,57^{\circ}$ $D\hat{A}E = 71,565 = -45^{\circ}$ $= 26,57^{\circ}$	✓ y-value/waarde ✓ x-value/waarde (2) ✓ tan DÊO = 3 ✓ 71,565° ✓ 26,57° (3)
4.3 $m_{AB} = \tan 26,57^{\circ}$ $= \frac{1}{2}$ $y = \frac{1}{2}x + c OR/OF \qquad y - y_1 = \frac{1}{2}(x - x_1)$ $5 = \frac{1}{2}(1) + c \qquad y - 5 = \frac{1}{2}(x - 1)$ $y = \frac{1}{2}x + 4\frac{1}{2} \qquad y = \frac{1}{2}x + \frac{9}{2}$	$\checkmark m_{AB} = \tan 26,57^{\circ}$ $\checkmark m_{AB} = \frac{1}{2}$ $\checkmark \text{ subst of } m \text{ and}$ $(1; 5) \text{ into formula}/$ $subst m en (1; 5) \text{ in}$ $formule$ $\checkmark \text{ equation/vgl}$ (4)

4.4 Solve x - 2y + 9 = 0 and y = 3x + 8 simultaneously: x - 2(3x+8) + 9 = 0✓ subst/vervang x - 6x - 16 + 9 = 0-5x = 7 $x = -1\frac{2}{5}$ ✓ x-value/waarde $\therefore y = 3(-1\frac{2}{5}) + 8 \quad OR/OF \quad -1\frac{2}{5} - 2y + 9 = 0$ $y = 3\frac{4}{5} \qquad \qquad y = 3\frac{4}{5}$ ✓ subst/vervang ✓ y-value/waarde (4) $\therefore D(-1\frac{2}{5}; 3\frac{4}{5})$ OR/OF x = 2y - 9y = 3(2y - 9) + 8✓ subst/vervang y = 6y - 27 + 8 $\therefore y = 3\frac{4}{5}$ ✓ v value/waarde $x = 2(3\frac{4}{5}) - 9$ **OR/OF** $3\frac{4}{5} = 3x + 8$ ✓ subst/vervang $x = -1\frac{2}{5}$ $x = -1\frac{2}{5}$ ✓ x-value/waarde $\therefore D(-1\frac{2}{5}; 3\frac{4}{5})$ (4)OR/OF $3x + 8 = \frac{1}{2}x + 4\frac{1}{2}$ ✓ equating/gelyk stel 6x + 16 = x + 95x = -7 $\therefore x = -1\frac{2}{5}$ ✓ x value/waarde $\therefore y = 3(-1\frac{2}{5}) + 8 \quad \mathbf{OR}/\mathbf{OF} \quad y = \frac{1}{2}(-1\frac{2}{5}) + 4\frac{1}{2}$ $y = 3\frac{4}{5} \qquad \qquad y = 3\frac{4}{5}$ $\therefore D(-1\frac{2}{5}; 3\frac{4}{5})$ ✓ subst/vervang ✓ y-value/waarde (4)OR/OF

$\begin{array}{c} x - 2y = -9 \dots (1) \\ -6x + 2y = 16 \dots (2) \\ (1) + (2): \end{array}$	
$-5x = 7$ $\therefore x = -1\frac{2}{7}$	✓ adding/optelling
5 ∴ $-1\frac{2}{5} - 2y = -9$ OR/OF $y = 3(-1\frac{2}{5}) + 8$	\checkmark x-value/waarde
$y = 3\frac{4}{5}$ $y = 3\frac{4}{5}$ $\therefore D(-1\frac{2}{5}; 3\frac{4}{5})$	✓ subst/vervang ✓ y-value/waarde
OR / <i>OF</i> y = 3x + 8(1) 6y = 3x + 27 (2)	(4)
$(1) - (2):-5y = -19∴ y = 3\frac{4}{5}$	✓ subtracting/ <i>aftrekking</i> ✓ y-value/ <i>waarde</i>
$3\frac{4}{5} = 3x + 8 \qquad x = 2(3\frac{4}{5}) - 9$ $x = -1\frac{2}{5} \qquad x = -1\frac{2}{5}$ $\therefore D(-1\frac{2}{5}; 3\frac{4}{5})$	✓ subst/vervang ✓ x-value/waarde (4)

area DMOE = area rectangle DCOG + area
$$\Delta DMG$$
 + area ΔDEC

$$= (1\frac{2}{5} \times 3\frac{4}{5}) + \frac{1}{2}(1\frac{2}{5})(\frac{7}{10}) + \frac{1}{2}(3\frac{4}{5})(\frac{19}{15})$$

$$= 8,22 \text{ square units/w eenh}$$

$$OR OF$$
area DMOE = area ΔEDO + area ΔODM

$$= \frac{1}{2}(EO \times y_D) + \frac{1}{2}(OM \times x_D)$$

$$= \frac{1}{2}[(\frac{8}{3} \times \frac{19}{5}) + (\frac{9}{2} \times \frac{7}{5})]$$

$$= \frac{1}{2}(\frac{104 + 189}{30})$$

$$= \frac{493}{60} \text{ or } or f 8\frac{13}{60} \text{ or } or f 8.22 \text{ square units/w eenh}$$

$$\frac{OR OF}{(6)}$$
area DMOE = area ΔEOF - area ΔDMF

$$= \frac{1}{2}(EO \times OF) - \frac{1}{2}(OF - OM)(-x_D)$$

$$= \frac{1}{2}[(\frac{8}{3} \times 8) + (\frac{7}{2} \times \frac{7}{5})]$$

$$= \frac{1}{2}[(\frac{640 - 147}{30})$$

$$= \frac{493}{60} \text{ or } 8\frac{13}{60} \text{ or } 8.22 \text{ square units/w eenh}$$

$$OR OF$$

$$(6)$$

$$OR OF$$

$$(6)$$

NOVEMBER 2015	
QUESTION/VRAAG 3	
$\begin{array}{c} y \\ P(a;b) \\ T \\ 45^{\circ} \end{array}$ $N(7;1) \\ Q(-2;-3) \\ M \\ R \\ R \end{array}$	x
$\begin{array}{ccc} 3.1 & m_{\rm PQ} = \tan 45^{\circ} \\ & = 1 \end{array}$	$\checkmark m = \tan 45^{\circ}$ $\checkmark answ/antw$ (2)
3.2 MN QP [midpt theorem/midpt-stelling] $\therefore m_{MN} = 1$ $\therefore y - y_1 = m(x - x_1)$ $\therefore y - 1 = 1(x - 7)$ $\therefore y = x - 6$	(2) $\checkmark S \text{ OR R}$ $\checkmark m_{MN}$ $\checkmark \text{ subst } m \text{ and/}en$ $N(7; 1)$ $\checkmark \text{ equation/}vgl$ (4)
OR/OF MN PQ [midpt theorem/midpt-stelling] $\therefore m_{MN} = 1$ $\therefore y = mx + c$ $\therefore 1 = 1(7) + c$ -6 = c $\therefore y = x - 6$	✓ S OR R ✓ m_{MN} ✓ subst <i>m</i> and/ <i>en</i> N(7; 1) ✓ equation/ <i>vgl</i> (4)
3.3 MN = $\frac{1}{2}$ PQ [midpoint theorem/midp stelling]	✓ S
$\therefore MN = \frac{7\sqrt{2}}{2} \approx 4,95$	✓ answ/antw (2)

0.5		1
3.5	QN = NS [diag of m/hoekl van m] $\frac{-2 + x_{s}}{2} = 7 \text{and/en} \frac{-3 + y_{s}}{2} = 1$ $\therefore x_{s} = 16 \therefore y_{s} = 5$ OR/OF QN = NS [diag of m/hoekl van m] $\therefore \text{ by inspection/deur inspeksie:}$	 ✓ method/metode ✓ x-value/waarde ✓ y-value/waarde (3) ✓ method/metode ✓ x-value/waarde
	S(16:5)	√ v-value/waarde
		(3)
3.6	Equation of/Vgl van PQ: $y = x + c$ -3 = -2 + c	(*)
	$y = x - 1 \qquad \therefore a = b + 1 \qquad \dots (1)$ From distance formula/Van afstandsformule: $PO = \sqrt{(x - x)^2 + (y - y)^2}$	✓ eq of/vgl van PQ
	$7\sqrt{2} = \sqrt{(a - (-2))^2 + (b - (-3))^2}$ ∴ 98 = (a + 2)^2 + (b + 3)^2(2) Subst (1) into (2): 98 = (b + 1 + 2)^2 + (b + 3)^2 98 = b^2 + 6b + 9 + b^2 + 6b + 9 0 = 2b^2 + 12b - 80 0 = b^2 + 6b - 40 ∴ 0 = (b + 10)(b - 4)	 ✓ subst Q & 7√2 into/in distance formula/ afstandsformule ✓ subst eq of/vgl v. PQ ✓ st form/st vorm
	$\therefore b = 4 (\text{since } b > 0)$ Subst $b = 4 \text{ into } (1):$ $\therefore a = 4 + 1 = 5$ $\therefore P(5; 4)$	 ✓ value of/waarde van b ✓ value of/waarde van a (6)
	OR/OF	(0)
	Equation of Vgl van PQ: $y = x + c$ -3 = -2 + c $y = x - 1$ $\therefore a = b + 1$ (1)	✓ eq of/vgl van PQ
	From distance formula/Van afstandsformule: $7\sqrt{2} = \sqrt{(a - (-2))^2 + (b - (-3))^2}$ $\therefore 98 = (a + 2)^2 + (b + 3)^2$ (2) Subst (1) into (2): $98 = (b + 1 + 2)^2 + (b + 3)^2$ $98 = 2(b + 3)^2$ $49 = (b + 3)^2$	 ✓ subst Q & 7√2 into/in distance formula/ afstandsformule ✓ subst eq of/vgl v. PQ ✓ simplification/ vereenvoudig
	$\pm 7 = b + 3$ $\pm 7 - 3 = b$ $\therefore b = 4 \text{ (since } b > 0\text{)}$ Subst $b = 4 \text{ into } (1):$ $\therefore a = 4 + 1 = 5$ $\therefore P(5; 4)$	 ✓ value of/waarde van b ✓ value of/waarde van a (6)

QUESTION/VRAAG 4	
P(0; 6) P(0; 6) P(0; 5) Q(5; 2) $B \alpha$ Q(5; 2) $B \alpha$ S	x
4.1 $(x-5)^{2} + (y-2)^{2} = r^{2}$ $(0-5)^{2} + (6-2)^{2} = r^{2}$ $25+16 = r^{2}$ $41 = r^{2}$ $\therefore (x-5)^{2} + (y-2)^{2} = 41$ OR/OF $PQ = \sqrt{(0-5)^{2} + (6-2)^{2}}$ $= \sqrt{25+16}$ $r = \sqrt{41}$ $\therefore (x-5)^{2} + (y-2)^{2} = 41$ $4.2 \qquad (0-5)^{2} + (y-2)^{2} = 41$ $25 + (y-2)^{2} = 41$ $25 + (y-2)^{2} = 41$ $25 + y^{2} - 4y + 4 = 41$ $y^{2} - 4y - 12 = 0$ $(y-6)(y+2) = 0$ $y \neq 6 \text{ or / of } y = -2$ $\therefore S(0; -2) \text{ or } y = -2$	✓ subst (5 ; 2) into circle eq/in sirkelvgl ✓ value of/waarde van r^2 ✓ equation/vgl (3) ✓ subst (5 ; 2) & (0 ; 6) into dist. form/in afst. form ✓ value of/waarde van r ✓ equation/vgl (3) ✓ $x = 0$ ✓ st form/st. vorm ✓ answ/antw (neg value) (3)

OR/OF $(0-5)^2 + (y-2)^2 = 41$ $\checkmark x = 0$ $25 + (y - 2)^2 = 41$ $(y-2)^2 = 16$ ✓ square form/ kwadraatvorm $y - 2 = \pm 4$ $y = 2 \pm 4$ $y \neq 6$ or / of y = -2∴ S(0;-2) ✓ answ/antw (neg value) OR/OF (3)P(0;6) $Draw/Trek QT \perp PS$ PT = TS [line from centre \perp to chord/ 4 T lyn van midpt ⊥ koord] -Q(5;2) $PT = y_{p} - y_{Q} = 6 - 2 = 4$ $y_Q - y_S = 4$ $y_{\rm S} = 2 - 4 = -2$ S ∴ S(0; -2) $\checkmark x = 0$ $\checkmark \checkmark y = -2$ (3) 4.3 $m_{\rm PQ} = \frac{6-2}{0-5}$ ✓ subst (0 ; 6) & (5; 2) into grad form/in grad. $=-\frac{4}{5}$ formule √ m_{PQ} $m_{\rm PQ} \times m_{\rm APB} = -1$ [tan/raakl \perp radius] $\therefore m_{\text{APB}} = \frac{5}{4}$ ✓ m_{APB} $\therefore y = \frac{5}{4}x + 6$ ✓ equation/vgl (4)4.4 $\tan \alpha = \frac{5}{4}$ $\checkmark \tan \alpha = m_{APB}$ $\therefore \alpha = 51,34^{\circ}$ ✓ answ/antw (2)OR/OF B(4,8;0) $\therefore \tan \alpha = \frac{6}{4.8}$ $\checkmark \tan \alpha = \frac{6}{4.8}$ $\therefore \alpha = 51,34^{\circ}$ ✓ answ/antw (2)

4.5	$\theta = BPS \qquad [tan-chord th/raakl-koordst.] = 90^{\circ} - \alpha \qquad [\angle sum in \Delta/\angle som van \Delta] = 90^{\circ} - 51,34^{\circ} = 38,66^{\circ} OR/OF$	✓ S $✓$ R ✓ 90° − α ✓ answ/antw (4)
	$PS = 8$ $PQ = SQ = \sqrt{41}$ $PS^{2} = PQ^{2} + SQ^{2} - 2.PQ.SQ.cosPQS$ $64 = 41 + 41 - 2.41.cosPQS$ $cosPQS = \frac{18}{82}$ $PQS = 77,32^{\circ}$ $\theta = \frac{1}{2}PQS$ $[\angle \text{ at centre} = 2 \times \angle \text{ circumf}]$ $= 38,66^{\circ}$	 ✓ correct subst into cosine rule ✓ PQ̂S = 77,32° ✓ R ✓ answ/antw (4)
4.6	Area $\Delta PQS = \frac{1}{2} PS \times height/hoogte$ $= \frac{1}{2} (8)(5)$ = 20 sq units/vk eenh OR/OF $PQS = 2 \times 38,66^{\circ}$ [$\angle at \text{ centre} = 2 \times \angle at \text{ circum/}$ $midpts \angle = 2omtreks \angle$] $= 77,32^{\circ}$	✓ area formula/e: ΔPQS ✓ PS = 8 ✓ $\bot h = 5$ ✓ answ/antw (4) ✓ size of/grootte v POS
	Area $\Delta PQS = \frac{1}{2} PQ.QS.\sin PQS$ = $\frac{1}{2} \cdot \sqrt{41} \cdot \sqrt{41} \cdot \sin 77,32^{\circ}$ = 20 sq units/vk eenh	 ✓ area rule/reël: ΔPQS ✓ subst correctly/ subst korrek ✓ answ/antw (4) [20]

NOVEN	1BER 2016	
QUE	STION/VRAAG 3	
	y = 2x + 16	
	M C(6 ; 3)	
	Α(-7;2)	X,
	O G B	·
3.1	M = Midpt of AC [diags of rectangle bisect/	
	$= M\left(\frac{-7+6}{2+3}, \frac{2+3}{2}\right)$	
	$\begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix}$	$\checkmark x$ -value of M $\checkmark y$ -value of M
	$= M\left(-\frac{1}{2};\frac{1}{2}\right)$	(2)
3.2	$m_{\rm BC} = \frac{3-0}{6-p} = \frac{3}{6-p}$	√answer (1)
	OR/OF m = $\frac{0-3}{-3} = \frac{-3}{-3}$	
	$m_{BC} = p - 6 - p - 6$	√answer (1)
3.3	$m_{\rm AD} = m_{\rm BC} \ [AD \mid BC]$	$\checkmark m_{\rm BC} = 2$
	$m_{BC} = 2$ $\frac{3}{2} = 2$	✓ equating
	$\overline{6-p}^{-2}$	- damente
	$S = 12 - 2p$ $R = 4^{1}$	√answer
	$p = 4\frac{1}{2}$ OB/OF	(3)
	$y - y_1 = 2(x - x_1)$	· m _{BC} = 2
	C(6;3) y-3=2(x-6)	✓ substituting
	$\therefore y = 2x - 9$	(6;3)
	but y = 0	
	$\therefore x = 4\frac{1}{2} = p$	v answer (3)
	OR/OF	
F	•	• •

	TOC/TOO Memoralidan	
	y = 2x + c	
	3 = 12 + c	(m 2
	-9 = c	$\sim m_{\rm BC} = 2$
	y = 2x - 9	
	0 = 2x - 9	✓ substituting
	9 9	
	$x = \frac{1}{2}$ $\therefore p = \frac{1}{2}$	
		√answer
34	$DB = \Delta C \qquad [diag of rectangle = / hock] v reghock =]$	(3)
2.1	$\Delta C = \sqrt{(x - x)^2 + (y - y)^2}$	
	$AC = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$	✓ substitution
	$AC = \sqrt{(6+7)^2 + (3-2)^2}$	
	$AC = \sqrt{13^2 + 1^2}$	✓ length of AC
	$\Lambda C = \sqrt{170}$	
	$AC = \sqrt{1/0}$	\checkmark AC = BD
	$DB = \sqrt{1/0} \text{ of } 13,04$	(3)
3.5	$\tan \alpha = m_{\rm BC} = 2$	$\checkmark \tan \alpha = m_{\rm BC}$
	$\therefore \alpha = 63,43^{\circ}$	$\checkmark \alpha = 63,43^{\circ}$
3.6	In quadrilateral OFBG:	(2)
	$OFB = 63,43^{\circ}$ [vert opp $\angle s/regoorst \angle e$]	✓ size of OFB
	$\hat{FOG} = \hat{GBF} = 90^{\circ}$	
	\therefore OGB = 360° - [90° + 90° + 63,43°] [sum \angle s quad/som \angle e vierh = 360°]	√ S
	$\therefore \hat{OGB} = 116.57^{\circ}$	√ answer
	OR/OF	(3)
	$m = -\frac{1}{2}$	$\sqrt{m} = -\frac{1}{2}$
	^m _{AB} ⁻ 2	^m _{AB} = 2
	$90^{\circ} + OGA = 153,43^{\circ}$	
	\therefore OGA = 63,43°	✓S
	$OGB = 180^{\circ} - 63,43^{\circ}$	✓ answer
	$= 116.57^{\circ}$ OR/OF	(3)
	$\hat{FOG} = \hat{GBF} = 90^{\circ}$	
	: GOFB is cyc quad	✓ S
	$\hat{OGB} = 180^{\circ} - 63,43^{\circ} \ [\angle s \text{ of cyc quad} = 180^{\circ}]$	✓ answer
	= 116,57°	(3)
	$OFR = 63.43^\circ$	
	$XOG = FBG = 90^{\circ}$	✓ S
	.: OGBF is a cyclic quad	√ S
	$\therefore \text{OGB} = 180^\circ - 63,43^\circ$	✓ answer
	$\hat{OGB} = 116,57^{\circ}$	(3)

3.7	$M\left(-\frac{1}{2};\frac{5}{2}\right)$ is the centre/ <i>is die middelpunt</i>	\checkmark M is centre
	$r = \frac{\sqrt{170}}{2}$ = radius [BD is diameter/middellyn]	$\checkmark r = \frac{\sqrt{170}}{2}$
	$\left(x+\frac{1}{2}\right)^2 + \left(y-\frac{5}{2}\right)^2 = \left(\frac{\sqrt{170}}{2}\right)^2 = \frac{85}{2} = 42,5$	✓ equation (3)
3.8	$\hat{CBM} = \hat{BAM} = 45^{\circ}$ [diag of square bisect $\angle s/hoekl v$ vierk halv $\angle e$] \therefore BC will be a tangent [converse tan chord th/omgekeerde raakl-koordst] OR /OF	\checkmark S \checkmark R (2)
	$A\hat{M}B = 90^{\circ}$ [diag of square bisect \bot]	√S
	$\begin{array}{c} AB \text{ is diameter} \\ BC \perp AB \\ \therefore \text{ BC is tangent} \\ \begin{bmatrix} \text{ line } \perp \text{ radius } or \text{ converse tan-chord th} \end{bmatrix} \\ B \\ B \\ \end{array}$	✓ R (2) [19]
۱ <u>ــــــــــــــــــــــــــــــــــــ</u>	•	

	$m_{\text{TS}} \times m_{\text{RS}} = -1 \qquad [\text{TS} \perp \text{SR}]$ $\therefore m_{\text{RS}} = \frac{2}{5}$ $y - y_1 = \frac{2}{5}(x - x_1)$ $y - 2 = \frac{2}{5}(x - 5)$ $y = \frac{2}{5}x$	$\checkmark m_{RS}$ \checkmark substitution m and (5 ; 2) \checkmark equation	(3)
4.4.1	$r = \sqrt{36\frac{1}{4}}$ TR = 2.r = $2\left(\sqrt{36\frac{1}{4}}\right) = \sqrt{145}$ OR/OF TM = $\sqrt{(3-9)^2 + \left(7-6\frac{1}{2}\right)^2} = \frac{\sqrt{145}}{2}$ TR = 2.r = $2\left(\sqrt{36\frac{1}{4}}\right) = \sqrt{145}$	 ✓ r ✓ answer ✓ substitution ✓ answer 	(2)
4.4.2	$M\left(9; 6\frac{1}{2}\right)$ $\therefore \frac{x_{R}+3}{2} = 9 \text{ and } \frac{y_{R}+7}{2} = 6\frac{1}{2}$ $\therefore R(15; 6)$ Answer only: full marks Answer only: only 1 coordinate correct (1 mark) $M\left(9; 6\frac{1}{2}\right)$ $\therefore R\left(9+6; 6\frac{1}{2}-\frac{1}{2}\right) = R(15; 6)$ OR/OF	 ✓ M ✓ x coordinate ✓ y coordinate ✓ M ✓ x coordinate ✓ y coordinate 	(3)

	Tibe/Tibb Titellotandulii		
	$m_{TM} = \frac{9-3}{6\frac{1}{2}-7} = -\frac{1}{12}$ $TM: 7 = -\frac{1}{12}(3) + c y = -\frac{1}{12}x + \frac{29}{4} \qquad \dots \dots \dots (1)$ $SR: y = \frac{2}{5}x \dots \dots \dots (2)$ $\frac{2}{5}x = -\frac{1}{12}x + \frac{29}{4}$ $\frac{29}{60}x = \frac{29}{4}$	 ✓ equating ✓ x coordinate ✓ y coordinate 	(3)
442	$\therefore x = 15$ $\therefore y = \frac{2}{5}(15) = 6$		
4.4.2	$ST = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ $ST = \sqrt{(5 - 3)^2 + (2 - 7)^2}$ $ST = \sqrt{4 + 25} = \sqrt{29}$ $\sin R = \frac{TS}{TR} = \frac{\sqrt{29}}{\sqrt{145}} or \frac{\sqrt{5}}{5} or \frac{1}{\sqrt{5}} or 0.45$ OR/OF $TS = \sqrt{29}$	✓ substitution ✓ answer ✓ ratio	(3)
	$SR = 2\sqrt{29}$ area of $\Delta TSR = \frac{1}{2} \left(\sqrt{29} \right) \left(2\sqrt{29} \right) = 29$ $29 = \frac{1}{2} \left(\sqrt{145} \right) \left(2\sqrt{29} \right) \sin R$ $\sin R = \frac{\sqrt{5}}{5} \text{ or } \frac{1}{\sqrt{5}}$	✓area ✓ rule ✓ ratio	(3)
4.4.4	$m_{\text{TR}} = \frac{7 - 6\frac{1}{2}}{3 - 9} = -\frac{1}{12} \qquad \text{OR/OF} m_{\text{TR}} = \frac{7 - 6}{3 - 15} = -\frac{1}{12}$ $m_{\text{TR}} \times m_{\text{KTL}} = -1 \qquad [r \perp \text{tangent}]$ $m_{\text{KTL}} = 12$ $y - y_1 = 12(x - x_1)$ $y - 7 = 12(x - 3)$ $y = 12x - 29$ substitute K(a; b):	$\sqrt{m_{\rm TR}} = -\frac{1}{12}$ $\sqrt{m_{\rm KTL}} = 12$ $\sqrt{y} = 12x - 29$	(3)
	b = 12a - 29 OR/ <i>OF</i>		

	1	
	$m_{\text{TR}} = \frac{7 - 6\frac{1}{2}}{3 - 9} = -\frac{1}{12}$ $m_{\text{TR}} \times m_{\text{KTL}} = -1 \qquad [r \perp \text{ tangent}]$	$\checkmark m_{\rm TR} = -\frac{1}{12}$
	$\frac{b-7}{a-3} = 12b-7 = 12(a-3)b = 12a - 29$	$\sqrt{m_{\text{KTL}}} = 12$ $\sqrt{\text{substitution}}$ (3;7) & (a;b) (3)
	OB/OF	
	$KR^2 = TR^2 + TK^2$	
	$(a-15)^{2} + (b-6)^{2} = (15-3)^{2} + (6-7)^{2} + (a-3)^{2} + (b-7)^{2}$	✓ subst into Pyth
	-30a + 225 - 12b + 36 = 144 + 1 - 6a + 9 - 14b + 49	√ multiplication
	2b = 24a - 58	√ simplification
4.4.5	b = 12a - 29	(3)
4.4.5	$\frac{11}{\sqrt{(a-3)^2 + (b-7)^2}} = \sqrt{145}$	✓ substitution into distance formula
	$(a-3)^2 + (b-7)^2 = 145$ Substitute $b = 12a - 29$ [from 4.4.4] $(a-3)^2 + (12a-29-7)^2 = 145$	✓ substitution of $b = 12a - 29$
	$(a-3)^2 + (12a-36)^2 = 145$	v - 12a - 29
	$a^{2} - 6a + 9 + 144a^{2} - 864a + 1296 - 145 = 0$	
	$145a^{2} - 870a + 1160 = 0$ $a = \frac{870 \pm \sqrt{(870)^{2} - 4(145)(1160)}}{290}$ $a = 2 \text{ or } a = 4$ $\therefore b = 12(2) - 29 \text{or } b = 12(4) - 29$ $= -5 = -19$	 ✓ standard form ✓ subst into formula or factorise ✓ values of a ✓ value of b
	∴ K(2;-5)	
	OR/ <i>0F</i>	

$\sqrt{(a-3)^2 + (b-7)^2} = \sqrt{145}$	✓ substitution into
$(a-3)^2 + (b-7)^2 = 145$	distance formula
Substitute $b = 12a - 29$ [from 4.4.4]	
$(a-3)^2 + (12a-29-7)^2 = 145$	\checkmark substitution of $h = 12\pi - 20$
$(a-3)^2 + (12a-36)^2 = 145$	b = 12a - 29
$(a-3)^2 + 144(a-3)^2 = 145$	
$(a-3)^2 = 1$	$\checkmark (a-3)^2 = 1$
$a - 3 = \pm 1$	✓ ±1
a = 2 or 4	\checkmark values of <i>a</i>
$\therefore b = 12(2) - 29$ or $b = 12(4) - 29$	
= -5 = 19 $\therefore K(2; -5)$	\checkmark value of b
	(6)
OR/OF	
$KR^2 = TR^2 + TK^2$	✓ substitution
$(a + 15)^2 + (b + 6)^2 = 145 + 145$	\checkmark substitution of $b = 12a - 29$
$(a-15)^2 + (b-6)^2 - 145 + 145$	
$(a-15)^{2} + (12a-29-6)^{2} = 290$	
$(a-15)^2 + (12a-35)^2 = 290$	√standard form
$a^2 - 30a + 225 + 144a^2 - 840a + 1225 = 290$	
$145a^2 - 870a + 1160 = 0$	✓ factors
$a^2 - 6a + 8 = 0$	
$\therefore (a-2)(a-4) = 0$	\checkmark values of <i>a</i>
a=2 or $a=4$	
$\therefore b = 12(2) - 29$ or $b = 12(4) - 29$	\checkmark value of b (6)
=-5 =19	
K(2;-5)	
	[23]

$c = 8 \qquad OR/OF \left(y - 3\frac{1}{2}\right) = -\frac{3}{2}x + \frac{9}{2}$	✓ equation of AC (4)
$y = -\frac{1}{2}x + 8$ $y = -\frac{1}{2}x + 8$ $y = -\frac{1}{2}x + 8$ 3.1.2 AC: $3x + 2y = 16$ and BG: $7x - 10y = 8$ $15x + 10y = 80$ $\frac{7x - 10y = 8}{22x = 88}$ $x = 4$ $3(4) + 2y = 16$ $y = 2$ $\therefore G(4; 2)$	 ✓ method /metode: solving simultaneously / los gelyktydig op ✓ x coordinate (x > 0) ✓ y coordinate (3)
OR/OF BG: $7x - 10y = 8$ $\therefore y = \frac{7}{10}x - \frac{8}{10}$ $\therefore \frac{7}{10}x - \frac{8}{10} = -\frac{3}{2}x + 8$ [CA from 3.1.1] $\frac{11}{5}x = \frac{44}{5}$ x = 4 2(4) + 2y = 16	 ✓ method: equating metode: stel vgls gelyk ✓ x coordinate (x > 0)
3(4) + 2y = 16 y = 2 $\therefore G(4; 2)$ $3.2 \qquad \frac{x_A + 4}{2} = 3 \text{ and } \frac{y_A + 2}{2} = 3\frac{1}{2}$	 ✓ y coordinate (3) ✓ equation ito x ✓ equation ito y (2)
$\therefore A(2; 5)$ OR / OF by translation/deur translasie: $x_A = 3 - (4 - 3) = 2$ $y_A = 3\frac{1}{2} + (3\frac{1}{2} - 2) = 5$ $\therefore A(2; 5)$	 ✓ equation ito x ✓ equation ito y (2)

3.4 Midpoint of AC =
$$\left(5 ; \frac{1}{2}\right)$$

$$\frac{x_{D} + (-6)}{2} = 5 \text{ and } \frac{y_{D} + (-5)}{2} = \frac{1}{2}$$

$$\therefore D(16; 6)$$

$$(4)$$

$$OR/OF$$
by translation/dmv translasie:
$$D(16; 6)$$

$$(4)$$

$$OR/OF$$

$$m_{BC} = \frac{-5 - (-4)}{-6 - 8} = \frac{1}{14} \text{ and } m_{AB} = \frac{5 - (-5)}{2 - (-6)} = \frac{5}{4}$$

$$AD: y - 5 = \frac{1}{14}(x - 2) \Rightarrow y = \frac{1}{14}x + \frac{34}{7}$$

$$CD: y + 4 = \frac{5}{4}(x - 8) \Rightarrow y = \frac{5}{4}x - 14$$

$$\frac{5}{4}x - 14 = \frac{1}{14}x + \frac{34}{7}$$

$$\therefore x = 16$$

$$y = 6$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

4.1.3	$M\left(\frac{-4+0}{2}; \frac{5+(-3)}{2}\right)$ $\therefore M(-2; 1)$ $r^{2} = (x_{2} - x_{1})^{2} + (y_{2} - y_{1})^{2}$	 ✓ x value of M ✓ y value of M
	$r^{2} = (-2 + 4)^{2} + (1 - 5)^{2}$ $\therefore r^{2} = 20$ $\therefore (x + 2)^{2} + (y - 1)^{2} = 20 \text{ or } (\sqrt{20})^{2}$	$\checkmark r^2 = 20$ \checkmark equation (4)
	OR/OF $M\left(\frac{-4+0}{2}; \frac{5+(-3)}{2}\right) \therefore M(-2; 1)$	✓ ✓ M (-2; 1)
	$(x + 2)^{2} + (y - 1)^{2} = r^{2}$ $(-4 + 2)^{2} + (5 - 1)^{2} = r^{2}$ $\therefore r^{2} = 20$ $\therefore (x + 2)^{2} + (y - 1)^{2} = 20 \text{ or } (\sqrt{20})^{2}$	$r^2 = 20$ \checkmark equation (4)
	OR/OF $M\left(\frac{-4+0}{2}; \frac{5+(-3)}{2}\right) \therefore M(-2; 1)$	✓✓ M (-2;1)
	PK = $\sqrt{(-4-0)^2 + (5-(-3))^2} = \sqrt{80}$ $r = \frac{\sqrt{80}}{2} = \sqrt{20}$ ∴ $(x+2)^2 + (y-1)^2 = 20 \text{ or } (\sqrt{20})^2$	$r^2 = 20$ \checkmark equation (4)

4.1.4	$\tan\theta = m_{\rm PK} = -2$	$\checkmark \tan \theta = -2$
	$\therefore \theta = 180^\circ - 63,43^\circ$	\checkmark size of θ
	-110,57	
	$PKR = 110,57^{\circ} - 90^{\circ} [ext \ 2 \text{ of } \Delta MOK]$	✓ answer
	$= 20,57^{\circ}$	(3)
	P \10	
	√80 K	
	$\underline{\text{In } \Delta \text{RPK}}$	
	$PK = \sqrt{(0 - (-4))^2 + (-3 - 5)^2} = \sqrt{80}$	
	$PR = \sqrt{(-4-0)^2 + (5-7)^2} = \sqrt{20}$	\checkmark lengths of PK, PR & RK
	RK = 10	
	$\cos P\hat{K}R = \frac{PK^2 + KR^2 - PR^2}{2.PK.KR} = \frac{(\sqrt{80})^2 + (10)^2 - (\sqrt{20})^2}{2(\sqrt{80})(10)}$	✓ correct values into cos rule
	$=\frac{2\sqrt{5}}{5}$	
	$\hat{PKR} = 26,57^{\circ}$	✓ answer
		(3)
	OR/OF	
	$\sin P\hat{K}R = \frac{\sqrt{20}}{\sqrt{80}}$	✓ lengths of sides
	10 OR/OF 10	✓ ratio
	$PKR = 26,57^{\circ}$ $PKR = 26,57^{\circ}$	✓ answer
	OBIOE	(3)
		✓ lengths of sides
	$tanPKR = \frac{\sqrt{20}}{\sqrt{20}}$	✓ ratio
	√80 - Â	✓ answer
	PKR = 26,57°	(3)

4.1.5	RS tangent at K(0; -3)	
	$\therefore m_{\rm PS} = m_{\rm tang} = \frac{1}{2}$	✓ gradient
	$\therefore y = \frac{1}{2}x - 3$	✓ equation (2
	OR/OF	,
	$m_{PK} = \frac{1-5}{-2+4} = -2$	
	$m_{PK} \times m_{tang} = -1$ [radius \perp tangent/raaklyn]	
	$\therefore m_{\text{tang}} = \frac{1}{2}$	✓ gradient
	$\therefore y = \frac{1}{2}x - 3$	✓ equation
4.2	$t \in (-3; 7)$	✓ -3 (A)
	OP/OF	✓ 7 (CA from 4.1.2) ✓ correct inequality
	-3 < t < 7	(3
		$\sqrt{-3}$ (A) $\sqrt{-7}$ (CA from (1.1.2)
		✓ correct inequality
		(3
4.3	RS: $y = \frac{1}{2}x + 7$: $S(-14; 0)$	✓ coordinates of S
	SP = $\sqrt{(-14 - (-4))^2 + (0 - 5)^2} = \sqrt{100 + 25} = \sqrt{125}$	✓ length of SP
	Area Δ SMK = $\frac{1}{2}$. MK . SP	 ✓ correct base & height into Area rule
	$=\frac{1}{2}(\sqrt{20})(\sqrt{125})$	 ✓ correct substitution ✓ answer
	= 25 square units	(4

OR/OF	
Produce KS to T	
RS: $y = \frac{1}{2}x + 7$: S(-14; 0)	✓ coordinates of S
$SK = \sqrt{(-14-0)^2 + (0+3)^2} = \sqrt{205}$	✓ length of SK & SM
$SM = \sqrt{(-14 - (-2))^2 + (0 - 1)^2} = \sqrt{145}$	
$m_{SK} = -\frac{1}{14} \implies TSO = 167,91^{\circ}$	
$m_{SM} = \frac{1}{12} \implies M\hat{S}O = 4,76^{\circ}$	
$M\hat{S}K = 180^{\circ} - 167,91^{\circ} + 4,76^{\circ} = 16,85^{\circ}$	√ size of /grootte v MSK
Area Δ SMK = $\frac{1}{2}$ (SM)(SK).sinMŜK	size of groone v Misic
$=\frac{1}{2}(\sqrt{145})(\sqrt{205}).\sin 16,85^{\circ}$	
= 24,9985 = 25 square units	 ✓ correct substitution into area rule
	✓ answer
	(.

UESTION/VRAAG 3	
K(-1;2) 78,69°	θ
L(-5;-2)	0 N(1;-1)
T(-6; -3) 13 13 13 13 13 13 M(-3; -5)	
3.1.1 $m_{\rm KN} = \frac{y_2 - y_1}{x_2 - x_1}$ $m_{\rm KN} = \frac{2 - (-1)}{x_2 - x_1}$	✓ correct substitution
$\begin{array}{c} m_{\rm KN} & -1 - 1 \\ = -\frac{3}{2} \end{array}$ Answer only: Full marks	✓ answer (2)
$\tan \theta = m_{\rm KN} = -\frac{3}{2}$	$\sqrt{\tan\theta} = m_{KN} = -\frac{3}{2}$
$\theta = 123,69^{\circ}$	✓ answer (2)
3.2 Inclination KL = $123,69^{\circ} - 78,69^{\circ} = 45^{\circ}$ [ext $\angle \Delta$] tan $45^{\circ} = m_{RL} = 1$	\checkmark S \checkmark tan 45° = $m_{KL} = 1$ (2)
$\begin{array}{l} 3.3 \qquad y = x + c \\ 2 = -1 + c \\ c = 3 \end{array}$	✓ substitute $(-1; 2)$ and m
y = x + 3 OR/OF	✓ equation (2)
$y - y_1 = 1(x - x_1)$ y - 2 = 1(x - (-1))	\checkmark substitute (-1; 2) and m
y = x + 3	✓ equation

3.4	$KN = \sqrt{(1+1)^2 + (-1-2)^2}$	✓ substitute K and N into distance formula
	$KN = \sqrt{13}$ or 3.61 Answer only: Full marks	✓ answer
		(2)
3.5.1	$(x+3)^{2} + (y+5)^{2} = 13$ (1)	✓ equation (1)
	L is a point on KL	
	y = x + 3(2)	
	(2) in (1):	
	$(x+3)^2 + (x+3+5)^2 = 13$	\checkmark substituting eq.(2)
	$x^{2} + 6x + 9 + x^{2} + 16x + 64 = 13$	substituting eq (2)
	$2x^2 + 22x + 60 = 0$	
	$x^{2} + 11x + 30 = 0$	✓ standard form
	(x+5)(x+6) = 0	
	x = -5 or $x = -6$	
	y = -2 or $y = -3$	\checkmark x-values
	L(-5; -2) or $(-6; -3)$	✓ y-values
	OR/OF	(5)
		\checkmark equation (1)
	$(x+3)^2 + (y+5)^2 = 13$ (1)	· equation (1)
	L is a point on KL	
	$y = x + 3 \qquad \therefore x = y - 3 \qquad \dots (2)$	
	(2) in (1):	
	$(y-3+3)^2 + (y+5)^2 = 13$	✓ substituting eq (2)
	$y^2 + y^2 + 10y + 25 = 13$	
	$2y^2 + 10y + 12 = 0$	
	$v^2 + 5v + 6 = 0$	(stars local forms
	(y+2)(y+3) = 0	 standard form
	(y+2)(y+3) = 0	\checkmark v-values (both)
	y = -2 or $y = -5x = -5$ or $x = -6$	\checkmark x-values (both)
	L(-5; -2) or $(-6; -3)$	(5)
3.5.2	Midpoint of KM: (-2; -1,5)	✓ midpoint of KM
	$x_{L} + 1$ 2 and $y_{L} - 1$ 3	
	$\frac{1}{2} = -2$ and $\frac{1}{2} = -\frac{1}{2}$	
	∴ L(- 5 ; - 2)	$\checkmark x$ value $\checkmark y$ value
	OR/OF	(3)
	$m_{\rm KN} = m_{\rm LM}$	$\checkmark m_{\rm IM} = m_{\rm KN}$
	y - (-5) = 3	
	$\frac{1}{x-(-3)} = -\frac{1}{2}$	
	2(x+3+5) = -3(x+3)	
	2x + 16 = -3x - 9	
	5x = -25 Answer only: Full marks	
	x = -5	$\checkmark x$ value
	\therefore L(-5; -2)	$\checkmark y$ value
		(3)

	OR/OF N→M: $(x; y) \rightarrow (x - 4; y - 4)$ \therefore L(-1-4; 2-4) OR/OF \therefore L(-5; -2)	N→K: $(x; y) \rightarrow (x-2; y+3)$ \therefore L(-3-2; -5+3) \therefore L(-5; -2)	
	OR/OF N→M: $(x; y) \rightarrow (x-4; y-4)$ \therefore L(-1-4; 2-4) OR/OF \therefore L(-5; -2)	N→K: $(x; y) \rightarrow (x-2; y+3)$ \therefore L(-3-2; -5+3) \therefore L(-5; -2)	
	OR / <i>OF</i> N→M: $(x; y) \rightarrow (x - 4; y - 4)$ ∴ L(-1-4; 2-4) OR / OF ∴ L(-5; -2)	N→K: $(x; y) \rightarrow (x-2; y+3)$ \therefore L(-3-2; -5+3) \therefore L(-5; -2)	
	OR/OF N→M: $(x; y) \rightarrow (x - 4; y - 4)$ \therefore L(-1-4; 2-4) OR/OF \therefore L(-5; -2)	N→K: $(x; y) \rightarrow (x-2; y+3)$ \therefore L(-3-2; -5+3) \therefore L(-5; -2)	
	OR/OF N→M: $(x; y) \rightarrow (x - 4; y - 4)$ ∴ L(-1-4; 2-4) OR/OF ∴ L(-5; -2)	N→K: $(x; y) \rightarrow (x-2; y+3)$ \therefore L(-3-2; -5+3) \therefore L(-5; -2)	✓ transformation ✓ x value ✓ y value (3)
3.6	T(-6; -3) (from Question KT = $\sqrt{(-1 - (-6))^2 + (2 - (-6))^2}$ = $\sqrt{50}$ KN = $\sqrt{13}$ (CA from 3.4) Area of Δ KTN = $\frac{1}{2}$ KT.KN s	(3.5.1) -3)) ²	 ✓ coordinates of T ✓ length of KT
	$= \frac{1}{2}\sqrt{50}.\sqrt{13}$ = 12,50 squa	sin78,69° re units	 ✓ substitution into area rule ✓ answer (4)

OR/OF In **Δ**KLM: $\frac{\mathrm{TL}}{\sin 22,62^{\circ}} = \frac{\sqrt{13}}{\sin 78,69^{\circ}}$ TL = 1,414..✓ length of TL $\mathrm{KL} = \sqrt{\left(-1 - (-5)\right)^2 + \left(2 - (-2)\right)^2}$ $=\sqrt{32}$ ∴ KT = 7,0708... ✓ length of KT Area of $\Delta KTN = \frac{1}{2} KT.KN sinL\hat{K}N$ $=\frac{1}{2}(7,0708).\sqrt{13}\sin 78,69^{\circ}$ ✓ substitution into area rule = 12,50 square units ✓ answer (4) [22]

QUL	STION/VRAAG 4	
	y J •S(6;5) F H	<i>x</i>
	$\overset{\bullet}{\mathbf{G}}(m ; n)$	
4.1	F(3;1)	$\checkmark x$ value $\checkmark y$ value (2)
4.2	$FS = \sqrt{(6-3)^2 + (5-1)^2}$ FS = 5	✓ substitution of F & S ✓ answer (2)
4.3	FH(FS) : HG = 1 : 2 $\therefore HG = 2 FH$ = 10	✓ HG = 10
		(1)
4.4	Tangents from common/same point / Raaklyne vanaf gemeenskaplike of dieselfde punt	(1)
4.4	Tangents from common/same point / Raaklyne vanaf gemeenskaplike of dieselfde punt $\hat{FHJ} = 90^{\circ}$ $[tan \perp radius / rkl \perp radius]$ $FJ^2 = 20^2 + 5^2$ [Pyth theorem/stelling] $FJ = \sqrt{425}$ or $5\sqrt{17}$ or 20,62	(1) ✓ answer (1) ✓ S ✓ R ✓ S ✓ answer (4)

4.5.3 K(22; <i>n</i>) [radius ⊥ tangent]	✓ K(22; <i>n</i>)
GK = HG = 10 [radii]	
FH = FS = 5 [radii]	
m = 22 - 10	
m = 12	\checkmark value of <i>m</i>
F, H and G are collinear [HJ is a common tangent]	
F, H en G is saamlynig [HJ is 'n gemeemskaplike raaklyn]	
$FG^2 = (12 - 3)^2 + (n - 1)^2$	✓ subst. of F and G in
	distance formula
$15^2 = 81 + (n-1)^2$	✓ FG = 15
$(n-1)^2 = 144$ $n^2 - 2n - 143 = 0$	√ simplification/
n-1 = +12 OB /OF $(n+11)(n-13) = 0$	standard form
$n \neq 13$ or $n = -11$ $n = -11$ $n = -11$ or $n \neq 13$	\checkmark value of <i>n</i>
G(12; -11)	✓ coordinates of G
	(7)
OR/OF	
$K(22; n)$ [radius \perp tangent]	\checkmark K(22; <i>n</i>)
GK = HG = 10 [radii]	
FH = FS = 5 [radii]	
m = 22 - 10	
m = 12	\checkmark value of <i>m</i>
Let J(22; y):	
$FI^2 = (22 - 3)^2 + (y - 1)^2$	✓ subst. of F and J in
(22-3) + (y-1)	distance formula
$425 = 361 + y^2 - 2y + 1$	\checkmark FJ = $\sqrt{425}$
$0 = y^2 - 2y - 63$	✓ standard form
0 = (y - 9)(y + 7)	· standard form
$v = 9 \text{ or/of } v \neq -7$	
n = 0 - 20 = -11	\checkmark value of <i>n</i>
(G(12) - 11)	✓ coordinates of G
	(7)
	[18]
	[10]

TRIGONOMETRY: SOLUTIONS			
MAY/JUNE 2019			
QUE	STION/VRAAG 5		
5.1.1	$\sin 191^{\circ} = -\sin 11^{\circ}$	$\checkmark -\sin 11^{\circ}$ (1)	
5.1.2	$cos 22^{\circ} = cos(2 \times 11^{\circ})$		
	$= 1 - 2\sin^2 11^\circ$	✓ answer (1)	
5.2	$\cos(x - 180^{\circ}) + \sqrt{2}\sin(x + 45^{\circ}) \\ = -\cos x + \sqrt{2}(\sin x \cos 45^{\circ} + \cos x \sin 45^{\circ})$	$\checkmark -\cos x \checkmark$ expansion	
	$= -\cos x + \sqrt{2} \left(\sin x \left(\frac{1}{\sqrt{2}} \right) + \cos x \left(\frac{1}{\sqrt{2}} \right) \right)$	✓ special angle ratios	
	$= -\cos x + \sin x + \cos x$	✓ simplification of last 2 terms	
	$= \sin x$	✓answer (5)	
	OR		
	$\cos(x - 180^\circ) + \sqrt{2}\sin(x + 45^\circ) = -\cos x + \sqrt{2}(\sin x \cos 45^\circ + \cos x \sin 45^\circ)$	$\checkmark -\cos x \checkmark$ expansion	
	$= -\cos x + \sqrt{2} \left(\sin x \left(\frac{\sqrt{2}}{2} \right) + \cos x \left(\frac{\sqrt{2}}{2} \right) \right)$	✓ special angle ratios	
	$= -\cos x + \sin x + \cos x$	✓ simplification of last 2 terms	
	$=\sin x$	√answer (5)	
5.3	$\sin P + \sin Q = \sin P + \cos P$	$\checkmark \sin Q = \cos P$	
	$(\sin P + \cos P)^2 = \left(\frac{7}{5}\right)^2$	✓ squaring	
	$\sin^2 P + 2\sin P\cos P + \cos^2 P = \frac{49}{25}$	✓ expansion	
	$2\sin P\cos P = \frac{49}{25} - 1$	$\checkmark \sin^2 P + \cos^2 P = 1$	
	$\sin 2P = \left(\frac{49}{25} - \frac{25}{25}\right)$		
	$=\frac{24}{25}$	√answer (5)	
L		[12]	

QUESTI	ON/VRAAG 6		
6.1	$\cos(x - 30^\circ) = 2\sin x$		
	$\cos x \cos 30^\circ + \sin x \sin 30^\circ = 2 \sin x$		✓ expansion
	$\frac{\sqrt{3}}{2}\cos x + \frac{1}{2}\sin x = 2\sin x$		✓ special ∠ s
	$\frac{\sqrt{3}}{2}\cos x = \frac{3}{2}\sin x$		✓ simplification
	$\tan x = \frac{\sqrt{3}}{3}$		\checkmark equation in tan
	$x = 30^{\circ} + k.180^{\circ}; k \in \mathbb{Z}$		\checkmark 30° \checkmark k.180°; k ∈ Z
	OR		OR
	$x = 30^{\circ} + k.360^{\circ}$ or $x = 210^{\circ} + k.360^{\circ}$	°; $k \in Z$	✓ 30° and 210° ✓ $k.360^\circ$; $k \in \mathbb{Z}$
			(6)
	-180° B 0°	D A f	×80° → x
6.2.1(a)	-180° B 0° C A(120°; 0)	D A f	$x \rightarrow x$
6.2.1(a) 6.2.1(b)	-180° B 0° C A(120°; 0) C(-150°; -1)	D A f	$\downarrow x$ $\downarrow x$ value $\downarrow y$ value (2)
6.2.1(a) 6.2.1(b) 6.2.2(a)	$ \begin{array}{c} -180^{\circ} & B & 0^{\circ} \\ \hline $	D A I f	$x \xrightarrow{80^{\circ}} x$ $x \xrightarrow{(1)}$ x value y value (2) $x \xrightarrow{(2)}$ (2)
6.2.1(a) 6.2.1(b) 6.2.2(a) 6.2.2(b)	$ \begin{array}{c} -180^{\circ} & B & 0^{\circ} \\ \hline A(120^{\circ}; 0) \\ \hline C(-150^{\circ}; -1) \\ x \in (-90^{\circ}; 30^{\circ}) \text{ OR } -90^{\circ} < x < 30^{\circ} \\ \hline x \in (-160^{\circ}; 20^{\circ}) \text{ OR } -160^{\circ} < x < 20 \end{array} $	°	$\begin{array}{c} \checkmark x \\ \hline & \\ \$0^{\circ} \\ \hline & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\$
6.2.1(a) 6.2.1(b) 6.2.2(a) 6.2.2(b) 6.2.3	$A(120^{\circ}; 0)$ $C(-150^{\circ}; -1)$ $x \in (-90^{\circ}; 30^{\circ}) \text{ OR } -90^{\circ} < x < 30^{\circ}$ $x \in (-160^{\circ}; 20^{\circ}) \text{ OR } -160^{\circ} < x < 20$ $y = 2^{2\sin x + 3}$	¢	$\begin{array}{c} \checkmark & x \\ & &$
6.2.1(a) 6.2.1(b) 6.2.2(a) 6.2.2(b) 6.2.3	$A(120^{\circ}; 0)$ $C(-150^{\circ}; -1)$ $x \in (-90^{\circ}; 30^{\circ}) \text{ OR } -90^{\circ} < x < 30^{\circ}$ $x \in (-160^{\circ}; 20^{\circ}) \text{ OR } -160^{\circ} < x < 20$ $y = 2^{2\sin x + 3}$ Range of $y = 2\sin x : y \in [-2: 2] \text{ OR}$	P A 1 f	$x \xrightarrow{80^{\circ}} x$ $x \xrightarrow{(1)}$ x value y value (2) $x \xrightarrow{(2)}$ $x \xrightarrow{(2)}$ $x \xrightarrow{(2)}$ $x \xrightarrow{(2)}$ $x \xrightarrow{(2)}$
6.2.1(a) 6.2.1(b) 6.2.2(a) 6.2.2(b) 6.2.3	$A(120^{\circ}; 0)$ $A(120^{\circ}; 0)$ $C(-150^{\circ}; -1)$ $x \in (-90^{\circ}; 30^{\circ}) \text{ OR } -90^{\circ} < x < 30^{\circ}$ $x \in (-160^{\circ}; 20^{\circ}) \text{ OR } -160^{\circ} < x < 20$ $y = 2^{2\sin x + 3}$ Range of $y = 2\sin x : y \in [-2; 2]$ OR Range of $y = 2\sin x + 3 : y \in [1; 5]$ OI	$a = \frac{1}{p}$	$x \xrightarrow{80^{\circ}} x$ $x \xrightarrow{(1)}$ x value y value (2) $x \xrightarrow{(2)}$ $x \xrightarrow{(2)}$ $x \xrightarrow{(2)}$ $x \xrightarrow{(2)}$ $x \xrightarrow{(2)}$ $x \xrightarrow{(2)}$ $x \xrightarrow{(2)}$
6.2.1(a) 6.2.1(b) 6.2.2(a) 6.2.2(b) 6.2.3	$A(120^{\circ}; 0)$ $A(120^{\circ}; 0)$ $C(-150^{\circ}; -1)$ $x \in (-90^{\circ}; 30^{\circ}) \text{ OR } -90^{\circ} < x < 30^{\circ}$ $x \in (-160^{\circ}; 20^{\circ}) \text{ OR } -160^{\circ} < x < 20$ $y = 2^{2\sin x+3}$ Range of $y = 2\sin x : y \in [-2; 2]$ OR Range of $y = 2\sin x + 3 : y \in [1; 5]$ OI Range: $y = 2^{2\sin x+3} : y \in [2 : 32]$ OP	$a = \frac{1}{2} \sum_{\substack{y \leq 2 \\ x \leq 1 \leq y \leq 5 \\ 2 \leq y \leq 32}} e^{y}$	$\begin{array}{c} \checkmark & answer \\ & (1) \\ \checkmark & x \text{ value } \checkmark y \text{ value} \\ & (2) \\ \checkmark & endpoints \\ \checkmark & correct interval \\ & (2) \\ \checkmark & endpoints \\ \checkmark & correct interval \\ & (2) \\ \hline & 1 \checkmark 5 \\ & 2 \checkmark 32 \end{array}$
6.2.1(a) 6.2.1(b) 6.2.2(a) 6.2.2(b) 6.2.3	$A(120^{\circ}; 0)$ $C(-150^{\circ}; -1)$ $x \in (-90^{\circ}; 30^{\circ}) \text{ OR } -90^{\circ} < x < 30^{\circ}$ $x \in (-160^{\circ}; 20^{\circ}) \text{ OR } -160^{\circ} < x < 20$ $y = 2^{2\sin x + 3}$ Range of $y = 2\sin x : y \in [-2; 2]$ OR Range of $y = 2\sin x + 3 : y \in [1; 5]$ OF Range: $y = 2^{2\sin x + 3} : y \in [2; 32]$ OR	$a = \frac{g}{D}$ $A = \frac{g}{1}$ $A = \frac{1}{f}$	$x \xrightarrow{80^{\circ}} x$ $x \xrightarrow{(1)}$ x value y value (2) $x \xrightarrow{(2)}$ $x \xrightarrow{(2)}$
6.2.1(a) 6.2.1(b) 6.2.2(a) 6.2.2(b) 6.2.3	$A(120^{\circ}; 0)$ $C(-150^{\circ}; -1)$ $x \in (-90^{\circ}; 30^{\circ}) \text{ OR } -90^{\circ} < x < 30^{\circ}$ $x \in (-160^{\circ}; 20^{\circ}) \text{ OR } -160^{\circ} < x < 20$ $y = 2^{2\sin x+3}$ Range of $y = 2\sin x : y \in [-2; 2]$ OR Range of $y = 2\sin x + 3 : y \in [1; 5]$ OI Range: $y = 2^{2\sin x+3} : y \in [2; 32]$ OR A	$a = \frac{1}{2} \sum_{k=1}^{\infty} $	$\begin{array}{c} \checkmark & x \\ & &$

QUEST	ION/VRAAG7	
	A B x C G	E
7.1.1	$\sin \theta = \frac{x}{AC} \qquad \text{OR} \qquad \qquad \frac{\sin \theta}{x} = \frac{\sin 90^{\circ}}{AC}$ $AC = \frac{x}{AC} \qquad \qquad AC = \frac{x}{AC}$	✓ trig ratio✓ simplification
	$\sin\theta$ $HC^{-}\sin\theta$	(2)
7.1.2	$\cos 60^{\circ} = \frac{x+2}{CE} \qquad \text{OR} \qquad \frac{\sin 30}{x+2} = \frac{\sin 90^{\circ}}{CE}$ $CE = \frac{x+2}{\cos 60^{\circ}} \qquad CE = \frac{x+2}{\sin 30^{\circ}}$ $= \frac{x+2}{\frac{1}{2}} = 2(x+2) \qquad = 2(x+2)$	 ✓ trig ratio ✓ making CE the subject (2)
7.2	Area $\triangle ACE = \frac{1}{2}AC.EC.\sin A\hat{C}E$ = $\frac{1}{2}\left(\frac{x}{\sin\theta}\right)(2(x+2))\sin 2\theta$ = $\frac{x(x+2) \times 2\sin\theta\cos\theta}{\sin\theta}$ = $2x(x+2)\cos\theta$	✓ use area rule correctly ✓ substitution of $\frac{x}{\sin \theta}(2(x+2))$ ✓ substitution of $\sin 2\theta$ (3)

ΑΥ/.	JUNE 2018	
OUES	TION/VR44G5	
QULS		
5.1.1	Given : $\sin M = \frac{15}{17}$ $MN^2 = 17^2 - 15^2$ 8a 17a	✓ sketch or Pyth
	$MN = 8 \qquad OR \qquad N \qquad 15a \qquad P$	✓ MN = 8
	$\therefore \tan M = \frac{15}{8}$	√answer (3
5.1.2	$\sin M = \frac{NP}{MP}$ $\frac{NP}{51} = \frac{15a}{17a}$	✓ equating trig ratios
	\therefore NP = 45	✓ answer (2
5.2	$\cos(x - 360^{\circ}) \cdot \sin(90^{\circ} + x) + \cos^{2}(-x) - 1$ = $\cos x \cdot \cos x + \cos^{2} x - 1$ = $\cos^{2} x + \cos^{2} x - 1$	$\frac{\sqrt{\cos x}}{\sqrt{\cos^2 x}}$
	$= 2\cos^2 x - 1$ $= \cos 2x$	✓ identity (4
5.3.1	$sin(2x + 40^{\circ})cos (x + 30^{\circ}) - cos(2x + 40^{\circ}) sin(x + 30^{\circ})$ = sin[(2x + 40^{\circ}) - (x + 30^{\circ})] = sin(x + 10^{\circ})	✓ reduction ✓ answer
5.3.2	$\sin(2x + 40^{\circ})\cos(x + 30^{\circ}) - \cos(2x + 40^{\circ})\sin(x + 30^{\circ}) = \cos(2x - 20^{\circ})$ $\therefore \cos(2x - 20^{\circ}) = \sin(x + 10^{\circ})$ $\cos(2x - 20^{\circ}) = \cos[90^{\circ} - (x + 10^{\circ})]$ $2x - 20^{\circ} = 80^{\circ} - x + k.360^{\circ} \text{ or } 2x - 20^{\circ} = 360^{\circ} - (80^{\circ} - x) + k.360^{\circ}$ $3x = 100^{\circ} + k.360^{\circ} \text{ or } 2x - 20^{\circ} = 280^{\circ} + x + k.360^{\circ}$ $x = 33,33^{\circ} + k.120^{\circ} \text{ or } x = 300^{\circ} + k.360^{\circ}; k \in \mathbb{Z}$	✓ equating ✓ co ratio ✓ $80^\circ - x \checkmark 280^\circ + x$ ✓ simplification/vereenv ✓ $x = 33,33^\circ + k.120^\circ$ ✓ $x = 300^\circ + k.360^\circ$
	OR/OF	$k \in Z \tag{7}$
	$\therefore \cos(2x - 20^{\circ}) = \sin(x + 10^{\circ})$ $\sin[90^{\circ} - (2x - 20^{\circ})] = \sin(x + 10^{\circ})$ $110^{\circ} - 2x = x + 10^{\circ} + k.360^{\circ} \text{ or } 110^{\circ} - 2x = 180^{\circ} - (x + 10^{\circ}) + k.360^{\circ}$ $3x = 100^{\circ} - k.360^{\circ} \text{ or } 110^{\circ} - 2x = 170^{\circ} - x + k.360^{\circ}$ $x = 33,33^{\circ} - k.120^{\circ} \text{ or } x = -60^{\circ} - k.360^{\circ}; k \in \mathbb{Z}$	✓ equating ✓ co ratio ✓ $x + 10^{\circ} \sqrt{170^{\circ}} - x$ ✓ simplification/vereenv ✓ $x = 33,33^{\circ} - k.120^{\circ}$ ✓ $x = -60^{\circ} - k.360^{\circ}$; $k \in Z$
		[18

QUEST	TION/VRAAG 6	
	-f	
	-180°	180°
	T	
	1	
6.1	$Period = 720^{\circ}$	✓ answer
		(1)
6.2	$y \in [-2; 2]$	√√ answer
		(2)
	OR/0F	
	$-2 \le y \le 2$	√√ answer
		(2)
6.3	$f(-120^{\circ}) - g(-120^{\circ})$	$\checkmark x = -120^{\circ}$
	$= -3 \sin\left(-\frac{120^{\circ}}{2}\right) - 2 \cos(-120^{\circ} - 60^{\circ})$	
	$\left(\begin{array}{c} 2 \end{array}\right) = 2\cos(120 - 60)$	✓ substitution
	$4 + 3\sqrt{3}$	√ answer
	$=\frac{4+3\sqrt{3}}{2}$ or 4,60 (4,5980)	(3)
641	$\frac{2}{1}$	(°)
0.4.1	and $90^\circ + 60^\circ = 150^\circ$	✓ value
	$\therefore x \in (-30^\circ \div 150^\circ)$	✓ answer
	OR/OF	(3)
	x-intercepts of g at $-90^\circ + 60^\circ = -30^\circ$	✓ value
	and $90^\circ + 60^\circ = 150^\circ$	✓ value
	$-30^{\circ} < x < 150^{\circ}$	✓ answer
		(3)
6.4.2	$x \in [-180^\circ; -120^\circ) \cup (-30^\circ; 60^\circ) \cup (150^\circ; 180^\circ]$	✓ [-180°; -120°)
		✓ (-30°; 60°)
		✓ (150° : 180°]
		\checkmark notation for inclusive in the
	OR/OF	first/last interval
		(4)
	$-180^{\circ} \le x < -120^{\circ}$ or $-30^{\circ} < x < 60^{\circ}$ or $150^{\circ} < x \le 180^{\circ}$	$\checkmark -180^{\circ} \le x < -120^{\circ}$
		✓ $-30^{\circ} < x < 60^{\circ}$
		$\checkmark 150^{\circ} < x \le 180^{\circ} 1$ mark: each
		interval
		\checkmark notation for inclusive in the
		first/last interval
		(4)
		[13]

193

QUESTION/VRAAG 7	
$Q \xrightarrow{\theta} B$ $2x$	≥ _R
7.1 In PMQ: $\tan \theta = \frac{x}{OM}$	✓ trig ratio
$\therefore QM = \frac{x}{\tan \theta}$ OR/OF	✓ answer (2)
$\frac{x}{\sin \theta} = \frac{MQ}{\sin P}$ $MQ = \frac{x \sin P}{\sin \theta}$	✓ sine rule
$=\frac{x\cos\theta}{\sin\theta}$ $=\frac{x}{\tan\theta}$	✓ answer (2)
7.2 In PMR : $\tan \theta = \frac{x}{MR}$ OR PMQ = PMR [AAS/HHS]	
$\therefore MR = \frac{x}{\tan \theta} = QM$ $Q\hat{M}R = 180^{\circ} - 2\beta$ $\frac{\sin \beta}{MR} = \frac{\sin Q\hat{M}R}{12x}$ $\sin \beta \times \frac{\tan \theta}{12x} = \frac{\sin(180^{\circ} - 2\beta)}{12x}$	 ✓ MR = QM ✓ correct substitution into the sine rule in ΔQMR
$\tan \theta = \frac{\sin 2\beta}{12x} \times \frac{x}{\sin \beta}$ $\tan \theta = \frac{2\sin \beta \cos \beta}{x} \times \frac{x}{x}$	✓ reduction
$\tan \theta = \frac{12x}{12x} \times \frac{\sin \beta}{\sin \beta}$	✓ double angle
$\tan \theta = \frac{1}{6}$ OR	(4)

EXAM KIT 202

In PMR : $\tan \theta = \frac{x}{MR}$ OR PMQ = PMR [AAS/HHS] $MR^{2} = QM^{2} + QR^{2} - 2QM.QR \cos \beta$ $MR^{2} = \left(\frac{x}{\tan \theta}\right)^{2} + (12x)^{2} - 2\left(\frac{x}{\tan \theta}\right)(12x)(\cos \beta)$ $\frac{x^{2}}{\tan^{2} \theta} = \frac{x^{2}}{\tan^{2} \theta} + 144x^{2} - 24\left(\frac{x^{2}}{\tan \theta}\right)(\cos \beta)$ $24\left(\frac{x^{2}}{\tan \theta}\right)(\cos \beta) = 144x^{2}$ $\cos \beta = 6 \tan \theta$ $\tan \theta = \frac{\cos \beta}{6}$	 ✓ correct substitution into the cosine rule in ∆QMR ✓ substitution ✓ MR = QM ✓ simplification
7.3 $\frac{x}{QM} = \frac{\cos \beta}{6}$ [both equal $\tan \theta$] $x = \frac{60 \cos 40}{6}$ x = 7,66 The height of the lighthouse is 8 metres	(4) \checkmark equating \checkmark subst. QM = 60 and $\beta = 40^{\circ}$ \checkmark answer (3) [9]

MAY/JUNE 2017

QUEST	ION/VRAAG 5	
5.1.1	$\tan A = \frac{\sin A}{\cos A}$ $\frac{2p}{2p}$	√identity
	$=\frac{-r}{p}$ $=2$	√value of tan A (2)
	$\tan A = \frac{2p}{p}$ $= 2$ $(p; 2p)$	$\frac{\sqrt{y}}{x}$ $\frac{\sqrt{y}}{\sqrt{y}}$ value of tan A (2)
5.1.2	$\sin^2 A + \cos^2 A = 1$ $(2p)^2 + p^2 = 1$	$\checkmark (2p)^2 + p^2 = 1$
	$4p^2 + p^2 = 1$ $5p^2 = 1$	\checkmark simplification of LHS
	$p^{2} = \frac{1}{5}$ $\therefore p = -\frac{1}{\sqrt{5}}$	√answer (3)
5.2	$2\sin^{2} x - 5\sin x + 2 = 0$ (2 sin x - 1)(sin x - 2) = 0	✓ factors or formula
	$\sin x = \frac{1}{2}$ or $\sin x = 2$ (no solution)	\checkmark both equations
	ref $\angle = 30^{\circ}$ $\therefore x = 30^{\circ} + k.360^{\circ}$ or $x = 150^{\circ} + k.360^{\circ}; k \in \mathbb{Z}$	✓ 30° + $k.360°$ ✓ 150° + $k.360°$; ✓ $k \in Z$ (6)
5.3.1	$\sin(x+300^\circ) = \sin x \cos 300^\circ + \cos x \sin 300^\circ$	✓ expansion/ <i>uitbreiding</i> (1)
5.3.2	$\sin(x + 300^\circ) - \cos(x - 150^\circ)$ = $\sin x \cos 300^\circ + \cos x \sin 300^\circ - (\cos x \cos 150^\circ + \sin x \sin 150^\circ)$ = $\sin x \cos 60^\circ - \cos x \sin 60^\circ - (-\cos x \cos 30^\circ + \sin x \sin 30^\circ)$ = $\sin x \cos 60^\circ - \cos x \sin 60^\circ + \cos x \cos 30^\circ - \sin x \sin 30^\circ$ = $\frac{1}{2} \sin x - \frac{\sqrt{3}}{2} \cos x + \frac{\sqrt{3}}{2} \cos x - \frac{1}{2} \sin x$	 ✓ 2nd expansion/ 2de uitbreiding ✓ reduction/reduksie ✓ special angle values/ speciale hoebwaardes
	= 0 OR/OF	✓ answer (5)

	$sin(x + 300^{\circ}) - cos(x - 150^{\circ})$ = sin x cos 300° + cos x sin 300° - (cos x cos 150° + sin x sin 150°) = sin x cos 60° - cos x sin 60° - (- cos x cos 30° + sin x sin 30°) = sin x cos 60° - cos x sin 60° + cos x cos 30° - sin x sin 30° = sin x sin 30° - cos x sin 60° + cos x sin 60° - sin x sin 30° = 0	 ✓ 2nd expansion/ 2de uitbreiding ✓ reduction/reduksie ✓ co-ratios / ko-verh ✓ answer (5)
5.4	Consider: $\frac{\tan x + 1}{\sin x \tan x + \cos x} = \sin x + \cos x$ $LHS = \frac{\left(\frac{\sin x}{\cos x} + 1\right)}{\left(\sin x \cdot \frac{\sin x}{\cos x} + \cos x\right)} = \frac{\left(\frac{\sin x + \cos x}{\cos x}\right)}{\left(\frac{\sin^2 x + \cos^2 x}{\cos x}\right)}$ $= \frac{\frac{\sin x + \cos x}{\cos x}}{\frac{1}{2}}$	✓ identity of tan x ✓ $\frac{\sin x + \cos x}{\cos x}$ ✓ $\frac{\sin^2 x + \cos^2 x}{\cos x}$ ✓ $\sin^2 x + \cos^2 x = 1$
	$= \frac{\sin x + \cos x}{\cos x} \times \frac{\cos x}{1}$ $= \sin x + \cos x$ $= RHS$	✓ simplify (5)
	OR/OF $LHS = \frac{\left(\frac{\sin x}{\cos x} + 1\right)}{\left(\sin x.\frac{\sin x}{\cos x} + \cos x\right)} = \frac{\left(\frac{\sin x}{\cos x} + 1\right)}{\left(\frac{\sin^2 x + \cos^2 x}{\cos x}\right)}$	✓ identity of $\tan x$ ✓ $\frac{\sin^2 x + \cos^2 x}{\cos x}$
	$= \frac{\left(\frac{\sin x}{\cos x} + 1\right)}{\frac{1}{\cos x}}$ $= \left(\frac{\sin x}{\cos x} + 1\right) \times \frac{\cos x}{1}$	$\checkmark \sin^2 x + \cos^2 x = 1$ $\checkmark \text{ simplify}$ $\checkmark \text{ multiplication}$
5.5.1	$= \text{RHS}$ $\left(\sqrt{1+k}\right)^2 = (\sin x + \cos x)^2$	(5)
5.5.1	$1 + k = \sin^2 x + 2\sin x \cos x + \cos^2 x$ $1 + k = 1 + \sin 2x$ $k = \sin 2x$	✓ square both sides ✓ $\sin^2 x + \cos^2 x = 1$ ✓ $\sin 2x$ (3)

5.5.2	From 5.5.1		
	$\sin x + \cos x = \sqrt{1 + \sin 2x}$		
	\therefore max value: $\sin x + \cos x = \sqrt{1+1}$	\checkmark max of sin 2x =1	
	$=\sqrt{2}$	✓ answer	(.
	OR/OF		
	Maximum value of $1 + \sin 2x = 1 + 1$	\checkmark max of sin 2x =1	
	= 2 $\therefore \text{ maximum value of } \sin x + \cos x = \sqrt{2}$	✓ answer	(
	OR/OF		
	$(\sin x + \cos x)^2 = \sin^2 x + 2\sin x \cos x + \cos^2 x$		
	$=1+\sin 2x$		
	$\therefore \max \text{ value} (\sin x + \cos x)^2 = 1 + 1 = 2$	(may of sin 2x-1	
	$\therefore \max \text{ value } \sin x + \cos x = \sqrt{2}$	\checkmark answer	
			(

QUESTION/VRAAG 7	
A = B = B = B = B = B = B = B = B = B =	B 8 cm G
7.1 KC = 6 cm	✓ answer (1)
7.2 Let P be the point of intersection of KL and CB	(1)
$\frac{KP}{KC} = \sin 60^{\circ}$ $KP = 6 \sin 60^{\circ}$ $KP = 3\sqrt{3} \text{ or } 5,20$ $\therefore KL = 8 + 3\sqrt{3} \text{ or } 13,20 \text{ cm}$ $F \qquad L \qquad G$	 ✓ trig ratio ✓ length of KP ✓ answer (3)
7.3 $DK^{2} = 6^{2} + 12^{2}$ $DK = \sqrt{180} \text{ or } 6\sqrt{5} \text{ or } 13,42 \text{ cm}$ $\frac{\sin K\hat{D}L}{KL} = \frac{\sin D\hat{L}K}{DK}$ $\frac{\sin K\hat{D}L}{\sin D\hat{L}K} = \frac{KL}{DK}$ $= \frac{8 + 3\sqrt{3}}{6\sqrt{5}} \text{ or } \frac{13,20}{13,42} \text{ or } 0,98$	✓ DK = $6\sqrt{5}$ ✓ use of sine rule $\frac{\sin K\hat{D}L}{\sin D\hat{L}K} = \frac{KL}{DK}$ ✓ answer (4)
	[8]

QUESTION/VRAAG 5	
5.1 $ \begin{array}{c} \sqrt{5} \\ T \\ 2 \\ R \\ 3 \\ S \end{array} $	
5.1.1(a) $\sin T = \frac{1}{\sqrt{5}} = \frac{\sqrt{5}}{5} = 0,45$	√value
5.1.1(b) $\cos S = \frac{3}{\sqrt{10}} = \frac{3\sqrt{10}}{10} = 0.95$	√value
5.1.2 $\cos(T+S) = \cos T \cos S - \sin T \sin S$ $= \left(\frac{2}{\sqrt{5}}\right) \left(\frac{3}{\sqrt{10}}\right) - \left(\frac{1}{\sqrt{5}}\right) \left(\frac{1}{\sqrt{10}}\right)$	$\checkmark \text{ expansion} \\ \checkmark \frac{2}{\sqrt{5}} \checkmark \frac{1}{\sqrt{10}} $
$= \frac{5}{\sqrt{50}} - \frac{1}{\sqrt{50}}$ $= \frac{5}{\sqrt{50}} \text{ or } \frac{1}{\sqrt{2}} \text{ or } \frac{\sqrt{2}}{2}$	✓ simplification✓ answer
5.2 $\frac{1}{\cos(360^\circ - \theta)\sin(90^\circ - \theta)} - \tan^2(180^\circ + \theta)$ $= \frac{1}{(\cos\theta)(\cos\theta)} - \tan^2\theta$ $= \frac{1}{\cos^2\theta} - \left(\frac{\sin^2\theta}{\cos^2\theta}\right)$	$\sqrt{\cos\theta}$ $\sqrt{\cos\theta}$ $\sqrt{\tan^2\theta}$ $\sqrt{\frac{\sin^2\theta}{\cos^2\theta}}$
$= \frac{1 - \sin^2 \theta}{\cos^2 \theta}$ $= \frac{\cos^2 \theta}{\cos^2 \theta} OR \frac{1 - \sin^2 \theta}{1 - \sin^2 \theta}$ $= 1$	√identity √ answer

5.3	$(\sin x - \cos x)^2 = \left(\frac{3}{4}\right)^2$	✓ squaring both sides
	$\sin^2 x - 2\sin x \cos x + \cos^2 x = \frac{9}{16}$	√expanding LHS
	$1 - 2\sin x \cos x = \frac{9}{16}$	✓ using identity
	$2\sin x \cos x = \frac{7}{16}$	✓ simplifying
	$\therefore \sin 2x = \frac{7}{16}$	√answer (5)
		[18]

QUES	STION/VRAAG 6	
6.1	$4\sin x + 2\cos 2x = 2$	
	$2\sin x + \cos 2x - 1 = 0$	
	$2\sin x + (1 - 2\sin^2 x) - 1 = 0$	√using identity
	$2\sin^2 x - 2\sin x = 0$	✓ standard form
	$2\sin x(\sin x - 1) = 0$	
	$2\sin x = 0$ or $\sin x - 1 = 0$	✓ factors
	$\sin x = 0$ $\sin x = 1$	$\sqrt{\sin x} = 0$ or
		$\sin x = 1$
	$x = k.180^{\circ}$ or $x = 90^{\circ} + k.360, k \in \mathbb{Z}$	(h 1909
		✓ <i>K</i> .180 ⁻
		$90^\circ + k.360, k \in Z$
6.0.1		(6)
6.2.1		✓ turning point $(-90^\circ \cdot -3)$
		✓ turning point
	g	(90°; 1)
		\checkmark (-180°; -1) &
-	180° -90° O 90° 180°	(0,-1)
	-1	
	-2	
	-3	
		(2)
6.2.2	(-90°:0°)	(3) √ √ answer
		(2)
	OR/OF	
	0.0° < ~ < 0°	✓ ✓ answer (2)
623	$f(\mathbf{x}) = \sigma(\mathbf{x})$	(2)
0.2.0	· _180°·0°·180°	
	$f(x + 30^{\circ}) = g(x + 30^{\circ})$	
	$r = -30^{\circ} \cdot 60^{\circ} \cdot 150^{\circ}$	✓ any ONE correct
		(2)
		[13]

QUESTION/VRAAG 7	
B B A B A B A B A B A A B A B A B A B A	c
7.1 $ \begin{array}{l} \hat{ABD} = \theta \text{[alternate } \angle s; \ \text{ lines} \text{]} \\ \cos \theta = \frac{BD}{AB} = \frac{64}{81} \\ \theta = 38^{\circ} \end{array} $ $ \begin{array}{l} \text{OR/OF} \\ \text{sin } BAD = \frac{64}{81} \\ BAD = 52, 18^{\circ} \\ \theta = 38^{\circ} \end{array} $	 ✓ correct trig ratio ✓ substitution into correct ratio ✓ answer (to the nearest degree) (3) ✓ correct trig ratio ✓ substitution into correct ratio ✓ answer (to the nearest degree)
7.2 $BC^{2} = AB^{2} + AC^{2} - 2(AB)(AC)\cos B\hat{A}C$ = $81^{2} + 87^{2} - 2(81)(87)\cos 82.6^{\circ}$ = 12314.754 BC = 110.97 m	(3) ✓ use cosine rule ✓ correct substitution into cosine rule ✓ answer (3)

$\frac{1.5}{BD} = \frac{\sin BDC}{BC}$	✓ use sine rule
$\sin \hat{DCB} = \frac{BD.\sin \hat{BDC}}{BC}$	
$\sin \hat{DCB} = \frac{64.\sin 110^\circ}{110,97}$	✓ substitution
$\therefore \hat{DCB} = 32,82^{\circ}$	✓ answer (3) [9]
	(3) [9]

	$(\sin x)$ (sin x)	$\sqrt{\sin x}$
	$= \frac{(-\frac{1}{\cos x})(-\cos x)}{\cos x}$	$\cos x$
	$4\sin x$	
	= 1	
	4	1 answerlantur
		* allswei/ullw
		(6)
5.3.1	$\sin A = \frac{\sin A}{p}$	✓ answer/antw
	$\tan A = \frac{1}{\cos A} - q$	(1)
5.3.2	$p^4 - q^4 = (p^2 + q^2)(p^2 - q^2)$	✓ factors/faktore
	$= (\sin^2 A + \cos^2 A)(\sin^2 A - \cos^2 A)$	
	$= (3)(\sin^2 A - \cos^2 A)$	
	$= (1)(\sin A - \cos A)$ $= 1(\cos^2 A - \sin^2 A)$	
	$= -1(\cos A - \sin A)$ $= -\cos 2A$	√identity/ <i>identiteit</i>
	$=-\cos 2A$	✓ –1 as CF/GF
		✓ answer/antw
		(4)
5.4.1	$\cos^2\theta - \cos^2\theta$	✓ writing as single
	$LHS/LK = \frac{1}{\sin\theta \cdot \cos\theta}$	term/skryf as
	$=\frac{\cos^2\theta-(2\cos^2\theta-1)}{2}$	enkelterm
	$\sin\theta.\cos\theta$	(a sector l
	$=\frac{1-\cos^2\theta}{1-\cos^2\theta}$	✓ expansion/
	$\sin\theta \cos\theta$	uitbreiding
	$=\frac{\sin\theta}{\sin\theta\cos\theta}$	
	$\sin\theta$	✓ simplify/vereenv
	$=\frac{1}{\cos\theta}$	
	$= \tan \theta = \text{RHS}/RK$	(identity lidentity it
		✓ Identity/Identiteit
		✓ simplify/vereenv
		(5

QUESTI	ON/VRAAG 6		
6.1	Period of/Periode van $f = 120^{\circ}$	√ 120°	
			(1)
6.2	<i>b</i> = 3	√b = 3	
			(1)
6.3	$x = -45^{\circ} \text{ or/}of x = -22,5^{\circ} \text{ or/}of x = 67,5^{\circ}$	$\sqrt{x} = -45^{\circ}$	
		$\sqrt{x} = -22,5^{\circ}$	
		√ <i>x</i> = 67,5°	
			(3)
6.4	x ∈ (-45°; -22,5°) ∪ (67,5°; 90°]	✓ critical values	
		\checkmark notation	
		✓ critical values	
		\checkmark notation	
	OR/OF		(4)
	$-45^{\circ} < x < -22,5^{\circ}$ or/of $67,5^{\circ} < x \le 90^{\circ}$	✓ kritieke waardes	
		✓ notasie	
		✓ kritieke waardes	
		✓ notasie	
			(4)
			[9]

QUESTIC	DN/VRAAG 7	
7.1	$QR^{2} = PQ^{2} + RP^{2} - 2.PQ.RP.\cos{\hat{P}}$ $(\sqrt{3}x)^{2} = x^{2} + x^{2} - 2.x.x.\cos{\hat{P}}$	
	$\cos \hat{P} = \frac{x^{2} + x^{2} - (\sqrt{3}x)^{2}}{2x \cdot x}$ $\cos \hat{P} = \frac{-x^{2}}{2x^{2}}$	 ✓ correct subst into cosine rule/korrek subst in cos-reël ✓ cosP̂ as subj/
	$\cos \hat{\mathbf{P}} = -\frac{1}{2}$ $\hat{\mathbf{P}} = 120^{\circ}$	onderw √ simplify/yereeny
		✓ answer/antw
7.2	$P\hat{R}Q = P\hat{Q}R = 30^{\circ} (\angle s \text{ opp equal sides}/\angle e \text{ teenoor gelyke sye})$	√S
	$Q\hat{R}S = 150^{\circ}$ ($\angle s$ on a str line/ $\angle e$ op reguitlyn)	√ S
	Area of/ <i>Opp van</i> Δ QRS = $\frac{1}{2}$ (QR)(RS)(sin Q \hat{R} S)	
	$= \frac{1}{2}(\sqrt{3}x)(\frac{3}{2}x)(\sin 150^{\circ})$ $= (\frac{3\sqrt{3}}{4}x^{2})(\frac{1}{2})$ $= \frac{3\sqrt{3}}{8}x^{2}$	 ✓ correct subst into area rule/korrek subst in opp-reël ✓ simplify/vereenv
		✓ answer/antw
		(5 [9

SOLUTIONS EUCLIDEAN GEOMETRY

FEB/MAR 2018

QUESTION/VRAAG 8

8.1.1	$\hat{\mathbf{P}} = \hat{\mathbf{M}}_1 = 66^\circ$	[tan chord theorem/raaklyn koordst]	✓S ✓R
			(2)
8.1.2	$\hat{M}_2 = 90^\circ$	$[\angle in semi circle / \angle in halfsirkel]$	✓S ✓R
012		5 0 4 0 4 A A A A A A A A A A A A A A A A	(2)
8.1.5	$N_1 = 180^\circ - (90^\circ + 66^\circ)$	[sum of \angle s of /som van $\angle e \Delta MNP$]	√s
	= 24°		(1)
8.1.4	$\hat{O}_2 = \hat{P} = 66^\circ$	[corres. ∠s;/ooreenk ∠e, PM OR]	√s √r
			(2)
8.1.5	$\hat{R} + \hat{N}_1 + \hat{N}_2 = 180^\circ - 66^\circ$	[sum of \angle s of/ <i>som van $\angle e \Delta RNO]$</i>	
	=114°		√s
	$\hat{R} = \hat{N}_1 + \hat{N}_2 = 57^{\circ}$	$[\angle s \text{ opposite} = radii / \angle e \text{ teenoor} = radii]$	✓S/R
	$\therefore \hat{N}_2 = 33^\circ$		√S
			(3)
	OR/OF		
	POR = 114° [2	∠s on straight line/∠e op reguitlyn]	√S
	PNR = 57° [2	\angle at centre = twice \angle at circumference/	✓ S/R
	^	$nidpts \angle = 2 \times omtreks \angle$	10
	\therefore N ₂ = 33°		× 5 (3)
L			(3)

9.2	A S 2 C	B 1 2 T 4 y 1 2 2 R	D	
9.2.1(a)	$\hat{B}_1 = x$	[∠s in same seg/∠e in dieselfde segm]	✓ S ✓ R	(2)
9.2.1(a) 9.2.1(b)	$\hat{B}_1 = x$ $\hat{B}_2 = y$	$[\angle s \text{ in same seg}/\angle e \text{ in dieselfde segm}]$ [ext \angle of cyclic quad/buite \angle koordevh]	$\checkmark S \checkmark R$ $\checkmark S \checkmark R$	(2)
9.2.1(a) 9.2.1(b) 9.2.2	$\hat{B}_1 = x$ $\hat{B}_2 = y$ $\hat{C} = 180^\circ - (x + y)$	$[\angle s \text{ in same seg}/\angle e \text{ in dieselfde segm}]$ $[ext \angle of cyclic quad/buite \angle koordevh]$ $[sum of \angle s of/som v \angle e, \Delta ACR]$	$\checkmark S \checkmark R$ $\checkmark S \checkmark R$ $\checkmark S$	(2)
9.2.1(a) 9.2.1(b) 9.2.2	$\hat{B}_1 = x$ $\hat{B}_2 = y$ $\hat{C} = 180^\circ - (x + y)$ $\hat{SBD} + \hat{C} = x + y + 1$	$[\angle s \text{ in same seg}/\angle e \text{ in dieselfde segm}]$ $[ext \angle of cyclic quad/buite \angle koordevh]$ $[sum of \angle s of/som v \angle e, \Delta ACR]$ $80^{\circ} - (x + y)$	$\checkmark S \checkmark R$ $\checkmark S \checkmark R$ $\checkmark S$	(2)
9.2.1(a) 9.2.1(b) 9.2.2	$\hat{B}_1 = x$ $\hat{B}_2 = y$ $\hat{C} = 180^\circ - (x + y)$ $\hat{SBD} + \hat{C} = x + y + 10$ $\hat{SBD} + \hat{C} = 180^\circ$	$[\angle s \text{ in same seg}/\angle e \text{ in dieselfde segm}]$ $[ext \angle of cyclic quad/buite \angle koordevh]$ $[sum of \angle s of/som v \angle e, \Delta ACR]$ $80^{\circ} - (x + y)$	$\begin{array}{c} \checkmark S \checkmark R \\ \checkmark S \checkmark R \\ \checkmark S \checkmark R \\ \checkmark S \\ \checkmark S \end{array}$	(2)
9.2.1(a) 9.2.1(b) 9.2.2	$\hat{B}_1 = x$ $\hat{B}_2 = y$ $\hat{C} = 180^\circ - (x + y)$ $\hat{SBD} + \hat{C} = x + y + 10^\circ$ $\hat{SBD} + \hat{C} = 180^\circ$ $\hat{SCDB} \text{ is a cyclic quad}$	$[\angle s \text{ in same seg}/\angle e \text{ in dieselfde segm}]$ $[ext \angle of cyclic quad/buite \angle koordevh]$ $[sum of \angle s of/som v \angle e, \Delta ACR]$ $80^{\circ} - (x + y)$ $[converse opp angles of cyclic quad]$ $[omgekeerde teenoorst \angle e koordevh]$	$\begin{array}{c} \checkmark S \checkmark R \\ \checkmark S \checkmark R \\ \checkmark S \checkmark R \\ \checkmark S \\ \checkmark S \\ \checkmark R \end{array}$	(2) (2) (3)
9.2.1(a) 9.2.1(b) 9.2.2	$\hat{B}_{1} = x$ $\hat{B}_{2} = y$ $\hat{C} = 180^{\circ} - (x + y)$ $\hat{SBD} + \hat{C} = x + y + 10^{\circ}$ $\hat{SBD} + \hat{C} = 180^{\circ}$ $\hat{SCDB} \text{ is a cyclic quad}$ OR/OF	$[\angle s \text{ in same seg}/\angle e \text{ in dieselfde segm}]$ $[ext \angle of cyclic quad/buite \angle koordevh]$ $[sum of \angle s of/som v \angle e, \Delta ACR]$ $80^{\circ} - (x + y)$ $[converse opp angles of cyclic quad]$ $[omgekeerde teenoorst \angle e koordevh]$	$\begin{array}{c} \checkmark S \checkmark R \\ \checkmark S \checkmark R \\ \checkmark S \\ \checkmark S \\ \checkmark S \\ \checkmark R \end{array}$	(2) (2) (3)
9.2.1(a) 9.2.1(b) 9.2.2	$\hat{B}_{1} = x$ $\hat{B}_{2} = y$ $\hat{C} = 180^{\circ} - (x + y)$ $\hat{SBD} + \hat{C} = x + y + 1$ $\hat{SBD} + \hat{C} = 180^{\circ}$ $SCDB \text{ is a cyclic quad}$ OR/OF $\hat{S}_{1} = \hat{T}_{2} \qquad [\angle s$	$[\angle s \text{ in same seg}/\angle e \text{ in dieselfde segm}]$ $[ext \angle of cyclic quad/buite \angle koordevh]$ $[sum of \angle s of/som v \angle e, \Delta ACR]$ $80^{\circ} - (x + y)$ $[converse opp angles of cyclic quad]$ $[omgekeerde teenoorst \angle e koordevh]$ s in same segment/\angle e in dies. segment]	$\begin{array}{c} \checkmark S \checkmark R \\ \checkmark S \checkmark R \\ \checkmark S \\ \checkmark S \\ \checkmark S \\ \checkmark R \\ \checkmark S \\ \checkmark S \\ \checkmark S \\ \checkmark S \end{array}$	(2) (2) (3)
9.2.1(a) 9.2.1(b) 9.2.2	$\hat{B}_{1} = x$ $\hat{B}_{2} = y$ $\hat{C} = 180^{\circ} - (x + y)$ $\hat{SBD} + \hat{C} = x + y + 14$ $\hat{SBD} + \hat{C} = 180^{\circ}$ $SCDB \text{ is a cyclic quad}$ OR/OF $\hat{S}_{1} = \hat{T}_{2} \qquad [\angle s$ $\hat{T}_{2} = \hat{D}_{1} + \hat{D}_{2} = B\hat{D}R$	$[\angle s \text{ in same seg}/\angle e \text{ in dieselfde segm}]$ $[ext \angle of cyclic quad/buite\angle koordevh]$ $[sum of \angle s of/som v \angle e, \Delta ACR]$ $80^{\circ} - (x + y)$ $[converse opp angles of cyclic quad]$ $[omgekeerde teenoorst \angle e koordevh]$ $s \text{ in same segment}/\angle e \text{ in dies. segment}]$ $[ext \angle of cyc quad/buite\angle koordevh]$	$\checkmark S \checkmark R$ $\checkmark S \checkmark R$ $\checkmark S$ $\checkmark S$ $\checkmark S$ $\checkmark S$ $\checkmark S$ $\checkmark S$	(2) (2) (3)
9.2.1(a) 9.2.1(b) 9.2.2	$\hat{B}_{1} = x$ $\hat{B}_{2} = y$ $\hat{C} = 180^{\circ} - (x + y)$ $\hat{S}\hat{B}D + \hat{C} = x + y + 1$ $\hat{S}\hat{B}D + \hat{C} = 180^{\circ}$ $SCDB \text{ is a cyclic quad}$ OR/OF $\hat{S}_{1} = \hat{T}_{2} \qquad [\angle s$ $\hat{T}_{2} = \hat{D}_{1} + \hat{D}_{2} = B\hat{D}R$ $\therefore \hat{S}_{1} = B\hat{D}R$	$[\angle s \text{ in same seg}/\angle e \text{ in dieselfde segm}]$ $[ext \angle of cyclic quad/buite \angle koordevh]$ $[sum of \angle s of/som v \angle e, \Delta ACR]$ $80^{\circ} - (x + y)$ $[converse opp angles of cyclic quad]$ $[omgekeerde teenoorst \angle e koordevh]$ $s \text{ in same segment}/\angle e \text{ in dies. segment}]$ $[ext \angle of cyc quad/buite \angle koordevh]$	$\begin{array}{c} \checkmark S \checkmark R \\ \checkmark S \checkmark R \\ \checkmark S \checkmark R \\ \checkmark S \\ \checkmark S \\ \checkmark R \\ \checkmark S \\ \end{matrix}$	(2) (2) (3)
9.2.1(a) 9.2.1(b) 9.2.2	$\hat{B}_{1} = x$ $\hat{B}_{2} = y$ $\hat{C} = 180^{\circ} - (x + y)$ $\hat{SBD} + \hat{C} = x + y + 14$ $\hat{SBD} + \hat{C} = 180^{\circ}$ $SCDB \text{ is a cyclic quad}$ OR/OF $\hat{S}_{1} = \hat{T}_{2} \qquad [\angle s$ $\hat{T}_{2} = \hat{D}_{1} + \hat{D}_{2} = B\hat{D}R$ $\therefore \hat{S}_{1} = B\hat{D}R$ $\therefore SCDB \text{ is cyc quad}$	$[\angle s \text{ in same seg}/\angle e \text{ in dieselfde segm}]$ $[ext \angle of cyclic quad/buite \angle koordevh]$ $[sum of \angle s of/som v \angle e, \Delta ACR]$ $80^{\circ} - (x + y)$ $[converse opp angles of cyclic quad]$ $[omgekeerde teenoorst \angle e koordevh]$ $s \text{ in same segment}/\angle e \text{ in dies. segment}]$ $[ext \angle of cyc quad/buite \angle koordevh]$ $[ext \angle of quad = opp \angle/buite \angle = tos \angle]$	$\checkmark S \checkmark R$ $\checkmark S \checkmark R$ $\checkmark S$ $\checkmark R$	(2) (2) (3)

$\hat{T}_4 = y - 30^\circ$	$[ext \angle of/buite \angle \Delta TDR]$	√ S	
$\hat{T}_1 = y - 30^{\circ}$	[vert opp $\angle s = /regoorst \angle e =$]	✓ S	
$y - 30^\circ + x + 100^\circ = 180^\circ$	$\circ [\text{sum of } \angle \text{s of} / \text{som } v \angle e, \ \Delta \text{AST}]$		
$\therefore x + y = 110^{\circ}$			
$\hat{SBD} = 110^{\circ}$		10	
∴ SD not diameter	[line does not subtend 90° \angle]	✓ S	
SD nie 'n middellyn	[lyn onderspan nie 90°∠]	√ R	
OR/OF			(4
$\hat{AST} = \hat{C} + \hat{D}_2$	[ext \angle of/ <i>buite</i> $\angle \Delta$ SCD]	√ S	
$\hat{C} = 100^\circ - 30^\circ = 70^\circ$		✓ S	
$\hat{SBD} = 180^{\circ} - 70^{\circ}$	opp ∠s cyclic quad/ teenoorst ∠e kdvh]		
= 110°		✓ S	
∴ SD not diameter SD nie 'n middellyn	[line does not subtend 90° ∠] [lyn onderspan nie 90°∠]	✓ R	(4
			[16
			110

	.: MC is a tangent to the circle at C [converse : tan chord th] MC is 'n raaklvn by C [omgekeerde raakl koordst]	✓ R (5)
	In $\triangle ACB$ and $en \triangle CMD$	
	$\hat{B} = \hat{D}_2 = x$ [proved OR exterior \angle of cyclic quad.]	✓ S
	$\hat{A}_2 = \hat{C}_2 = 90^\circ - x$ [proved OR sum of \angle s in \triangle]	✓ S
	$\begin{bmatrix} Bewys \ OF \ som \ v \ \angle e \ in \ \Delta \end{bmatrix}$ $\Delta ACB \parallel \Delta CMD \qquad [\angle, \angle, \angle]$	✓ R (2)
	OR/OF	(3)
	$B = D_2 = x$ [proved OR exterior \angle of cyclic quad.]	
	[bewys OF buite $\angle v$ koordevh]	✓ S
1	$ACB = AMC = 90^{\circ}$ [given/gegee]	✓S
	$\Delta ACB \parallel \Delta CMD [\angle, \angle, \angle]$	✓ R
	OR/OF	(3)
	In $\triangle ACB$ and/ <i>en</i> $\triangle CMD$	
	$\hat{B} = \hat{D}_{2} = x$ [proved OR exterior \angle of evelic and]	
	[henry OF builte / v koordevh]	
	$\hat{A} = \hat{C} = 00^\circ$ r [proved OP sum of $\langle s \text{ in } A \rangle$]	VS
	$R_2 = C_2 = 30^{\circ} = x$ [proved OK sum of Z 's in Δ]	
	$\hat{\Delta C} \mathbf{R} = \Delta \hat{M} \mathbf{C} = 00^{\circ}$ [given OP given of $\langle z in \Delta l \rangle$	✓ S
	$ACD = AINC = 90$ [given OK sum of 2s in Δ]	Ĩ
	ΔACB ΔCMD	✓ S (3)
10.2.1		BC AB
	$\frac{1}{MD} = \frac{1}{DC} \qquad [\Delta ACB \parallel \Delta CMD]$	$\frac{1}{MD} = \frac{1}{DC}$
	DC AB	
	$\frac{1}{MD} = \frac{1}{DC}$ [BC = DC]	
	$\therefore DC^2 = AB \times MD$	\checkmark DC ² = AB × MD
	In AAMC and/on ACMD	
	$\hat{\mathbf{M}} = \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1$	✓ S
	$\hat{A} = \hat{C}$ [ten should the superbound of	
	$A_1 = C_2$ [tan chord in /radklyn koordst] OR/OF	✓ S
	$\hat{C}_1 + \hat{C}_2 = \hat{B} = \hat{D} = x$ [tan chord th /raaklyn koordst OR /OF	
	exterior \angle of cyclic quad/ buite $\angle v kdvh$]	
	$\Delta AMC \parallel \Delta CMD [\angle, \angle, \angle]$	
	AM CM	
	$\overline{\text{CM}} = \overline{\text{MD}}$	
	$\therefore CM^2 = AM \times MD$	\checkmark CM ² = AM × MD
	CM^2 AM×MD	
	$\therefore \frac{1}{DC^2} = \frac{1}{AB \times MD}$	✓ <u>AM×MD</u>
	AM	AB×MD
	$=\frac{1}{AB}$	(6)
L	110	4
PAPER 2

OR/OF	AC AB
$\frac{AC}{MC} = \frac{AB}{DC} \qquad [\Delta ACB \parallel \mid \Delta CMD]$	$\sqrt{\frac{AC}{MC}} = \frac{AB}{DC}$
In \triangle AMC and/ <i>en</i> \triangle ACB $\hat{C} = \hat{M} = 90^{\circ}$ [given] $\hat{A}_1 = \hat{A}_2$ [proven] OB (OF)	✓ S ✓ S
$A\widehat{C}M = \widehat{B} = x \text{ [proven]}$ $\Delta AMC \parallel \Delta ACB [\angle, \angle, \angle]$ $\frac{AC}{AM} = \frac{BC}{MC}$ $\therefore AC \times MC = AM \times BC$ $\therefore AC = \frac{BC.AM}{MC}$	✓ AC.MC = AM.BC
$CM \times AB = \frac{BC.AM}{BC.AM} \times DC$	✓ equating
$CM^{2} = \frac{DC.AM}{AB} \times DC [BC = DC]$	✓ S
$\frac{\mathrm{CM}^2}{\mathrm{DC}^2} = \frac{\mathrm{AM}}{\mathrm{AB}}$	(6)
10.2.2 In ΔDMC : $\frac{CM}{DC} = \sin x$	✓ trig ratio
$\frac{CM^2}{DC^2} = \sin^2 x \frac{AC}{AB} = \frac{CM}{DC}$	✓ square both sides
$\therefore \frac{AM}{AB} = \sin^2 x$	(2)
OR/OF	
In $\triangle ABC$: $\sin x = \frac{AC}{AB}$	
In $\triangle AMC$: $\sin x = \frac{AM}{AC}$	✓ 2 equations for $\sin x$
$\sin x \cdot \sin x = \frac{AC}{AB} \times \frac{AM}{AC} = \frac{AM}{AB}$	✓ product (2)
	[16]

FEB/MAR 2017	
QUESTION/VRAAG 8	
P P 1 2 108° 2 108° 2 108° 2 108° 2 108° 2 108° 2 108° 2 108° 2 108° 2	 V T
8.1 $\hat{Q} = 72^{\circ}$ [opp \angle s of cyclic quad/teenoorst $\angle e$ koordevh]	$\checkmark S \checkmark R$ (2)
8.2 $\hat{R}_2 = \hat{P}_1$ [\angle s opp equal sides/ \angle e teenoor gelyke sye] $\hat{R}_2 = \hat{P}_1$ [\angle s opp equal sides/ \angle e teenoor gelyke sye]	(2) ✓ S/R
$R_2 = \frac{2}{2} \qquad [\text{sum of } \angle \text{s in } \Delta/\text{som } \nu \angle e \text{ in } \Delta]$ $= 54^{\circ}$	√ answer (2)
8.3 $\hat{P}_2 = 42^{\circ}$ [tan chord theorem/ <i>raakl-koordst</i>]	$\checkmark S \checkmark R$ (2)
8.4 $\hat{R}_3 = \hat{P}_1 + \hat{P}_2$ [ext \angle of cyclic quad/buite \angle van koordevh]	✓ R
$= 54^{\circ} + 42^{\circ}$ $= 96^{\circ}$	✓ S (2)
OR/OF	$\checkmark \hat{R}_1 = 30^\circ$
$\begin{bmatrix} R_1 = 180^\circ - 108^\circ - 42^\circ = 30^\circ [\text{sum ot/som } van \angle s/e \text{ in } \Delta] \\ \hat{R}_3 = 180^\circ - \hat{R}_1 - \hat{R}_2 \qquad [\angle s \text{ on str line}/\angle e \text{ op reguitivn}] \end{bmatrix}$	1
$= 180^{\circ} - 30^{\circ} - 54^{\circ} \qquad [\text{sum of} som van \angle s/e \text{ in } \Delta]$	18
- 90	(2) [8]

QUEST	ION/VRAAG 9	
R		s
9.1.1	$\frac{ST}{TQ} = \frac{SW}{WP}$ [prop theorem/eweredighst; TW QP] = $\frac{2}{3}$	✓ S ✓ S (2)
9.1.2	$\frac{SV}{VR} = \frac{SW}{WP}$ [prop theorem/eweredighst; VW RP] = $\frac{2}{3}$	√ answer (1)
9.2	$\frac{ST}{TQ} = \frac{SV}{VR} \qquad [both equal/beide gelyk \frac{WS}{PW}]$ $\therefore TV \parallel QR \qquad [line divides 2 sides of \Delta in prop/lyn verdeel 2 sye van \Delta in dies verh]$ $\therefore \hat{T}_1 = \hat{Q}_1 \qquad [corresp/ooreenkomst \angle s/e; TV \parallel QR]$	✓ S ✓ S ✓ R ✓ R
9.3	ΔVWS <u>ΔRPS</u>	(4) ✓ ∆RPS (any order) (1)
9.4	$\frac{WV}{PR} = \frac{SW}{SP} [\Delta VWS \parallel \Delta RPS] \frac{WV}{PR} = \frac{SV}{SR} [\Delta VWS \parallel \Delta RPS]$ $= \frac{2}{5} OR/OF \qquad = \frac{2}{5}$	 ✓ ratio ✓ answer (2) [10]

MATHEMATICS

10.2			
10.2.1	\angle s in the same segment/ $\angle e$ in dieselfde sirkelsegment	✓ R	(1)
10.2.2	$\hat{P}_2 = \hat{S}_1 = y$ [$\angle s \text{ opp equal sides} / \angle e \text{ teenoor} = sye$]	✓ S ✓ R	
	$\hat{S}_1 = \hat{P}_3 = y$ [tan chord theorem/raakl-koordst]	✓ S ✓ R	
	$\therefore \hat{P}_2 = \hat{P}_3$		
10.2.3	PQ bisects TPS	. (S . (P	(4)
10.2.5	$POQ = 2S_1 = 2y[\angle \text{at centre} = 2 \times \angle \text{at cmc}/midpts \angle = 2 \times omtreks \angle]$	A PAK	(2)
10.2.4	$T\hat{P}A = \hat{P}_2 + \hat{P}_3 = 2y$ [proved/bewys in 11.2.2]		(2)
	$\therefore T\hat{P}A = P\hat{O}Q \qquad [proved/bewys in 11.2.3]$	\checkmark TPA = PÔQ	
	PT = tangent [converse tan chord theorem/omgek raakl-koordst]	√ R	
			(2)

10.2.5	$\hat{OPO} + \hat{OOP} = 180^\circ = 2v$	[sum of/sum v /s/e in A]	✓ S	
	OPQ + OQF = 180 - 2y $OOP = 90^\circ - y [/s opp eq]$	$\left[\operatorname{sides} / e \ to = \operatorname{sue} : \operatorname{OP} = \operatorname{OO} \right]$	√S√R	
	In ΔPAO :	$\frac{1}{2} \frac{1}{2} \frac{1}$		
	$\hat{OQP} + \hat{P}_2 + \hat{QAP} = 180^\circ$			
	$90^{\circ} - v + v + O\hat{A}P = 180^{\circ}$	[sum of/sum $v \angle s/e$ in Δ]	√ S	
	$\hat{OAP} = 90^{\circ}$		✓ S	
	$\therefore \hat{OAP} = 90^{\circ}$	[∠s/e on straight line/op reguitlyn]		(5)
	OR/ <i>0F</i>			
	$\hat{OPT} = 90^{\circ}$	[radius \perp tangent/raaklyn]	✓S✓R	
	$\therefore \hat{\mathbf{P}}_1 = 90^\circ - 2y$		√ S	
	$\hat{\mathbf{P}}_1 + \hat{\mathbf{O}} + \hat{\mathbf{OAP}} = 180^{\circ}$	[sum of sum $v \angle s/e$ in Δ]		
	$(90^\circ - 2y) + 2y + OÂP = 180^\circ$,	√ S	
	$\therefore \hat{OAP} = 90^{\circ}$		× 5	(5)
	OR/OF			
	POSQ is a kite/'n vlieër		1110	
	$\therefore OQ \perp PS$	[diag of a kite/hoeklyne v vlieër]	vvv s √√ R	
	\therefore OAP = 90°			
	0.			(5)
	OR/OF			
	In $\triangle OAP$ and $\triangle OAS$			
	OP = OS (radii)		√ S √ S	
	POA = 2v		* 5	
	$= 2\hat{P}$			
	= 00\$		√ S	
	$\Delta OAP \equiv \Delta OAS (SAS)$		√R	
	$O\hat{A}P = O\hat{A}S \ (\equiv \Delta s)$			
	$\hat{OAP} = OAS = 90^{\circ} (\angle$	is on str line)	√ S	
				(5)
				[19]

QUEST	ION/VRAAG 11		
11.1	$\hat{N}_2 = 90^\circ \qquad [\angle \text{ in semi-circle}/halfsirkel]$ $\therefore TPLN is a cyclic quad/ 'n koordevh [opp \angle s of quad is suppl/ teenoor \angle v vh is suppl] OR$	✓ S ✓ R ✓ R	(3
	$\hat{N}_2 = 90^\circ$ [\angle in semi-circle/halfsirkel] \therefore TPLN is a cyclic quad [ext \angle = int opp \angle /buite \angle = to binne \angle	$\begin{array}{c} \checkmark S \checkmark R \\ \checkmark R \end{array}$	
11.2	$\hat{\mathbf{T}}_{2} = P\hat{\mathbf{L}}\mathbf{N} = x \qquad [\text{ext } \angle \text{ of cyclic quad/buite} \angle \text{ van koordevk}]$ $\hat{\mathbf{K}} = 90^{\circ} - x \qquad [\text{sum of/som } v \angle \text{s/e in } \Delta]$ $\hat{\mathbf{N}}_{1} = \hat{\mathbf{K}} = 90^{\circ} - x \qquad [\text{tan chord theorem/raakl-koordst}]$] ✓ R ✓ S✓ R	(3
	OR/OF $\hat{K} = 90^{\circ} - x$ [sum of/som $v \angle s/e$ in Δ] $\hat{N}_1 = \hat{K} = 90^{\circ} - x$ [tan chord theorem/raakl-koordst]	✓ R ✓ S✓ R	(:
	OR/OF $\hat{N}_3 = x$ [tan chord theorem/raakl-koordst] $\hat{N}_2 = 90^{\circ}$ [\angle in semi circle/ halfsirkel] $\hat{N}_1 = 90^{\circ} - x$ [straight line/reguitlyn]	✓ R ✓ S ✓ S	

11.3.1	In Δ KTP and Δ KLN:			
	PKT = LKN [con	umon/gemeen]	✓ S	
	$\hat{\text{KPT}} = \hat{\text{KNL}} = 90^{\circ}$ [give	m/gegee]	✓ S	
	$ \therefore \Delta \text{ KTP} \Delta \text{ KLN} \angle \angle$	[2]	✓ R	
	OR/OF			(3)
	In Δ KTP and Δ KLN:			
	$P\hat{K}T = L\hat{K}N$ [con	mon/gemeen]	✓ S	
	$\hat{\text{KPT}} = \hat{\text{KNL}} = 90^{\circ}$ [give	n/gegee]	✓ S	
	$\hat{\mathbf{T}}_2 = \hat{\mathbf{PLN}} = x$ [prov	ved in 11.2 OR sum of \angle s in \triangle]	10	
	$\therefore \Delta \text{ KTP} \Delta \text{ KLN}$		v .5	(3)
11.3.2	$\frac{KT}{KL} = \frac{KP}{KN}$	<u>\s]</u>	✓ S/R	
	\therefore KT . KN = KP . KL		√ S	
	But KL = 2KP [rad	ii: $PK = LP$]	✓ S	
	\therefore KT . KN = KP . 2KP = 2KP ²			
	$= 2KP$ $= 2(KT^2 - TP^2)$	[Theorem of Pythagoras]	v s √s	
	$= 2KT^2 - 2TP$	2		(5)
				[14]

FEB/ MAR 2016

QUESTION/VRAAG 8	
8.1	
K 1 2 3 1 1 1 2 3 1 1 1 1 1 1 1 1	T
8.1.1 $\hat{\mathbf{K}}_2 = \hat{\mathbf{M}}_2 = 40^\circ$ [tan chord theorem/ <i>raakl-kdst</i>]	$\checkmark_{\rm S} \checkmark_{\rm R}$ (2)
8.1.2 $\hat{N}_1 = \hat{K}_1$ [\angle s in the same seg/ $\angle e$ in dies segm] $\hat{K}_1 = 84^\circ - 40^\circ = 44^\circ$	✓S ✓ R
$\therefore \hat{N}_1 = 44^{\circ}$	✓ _S (3)
8.1.3 $\hat{\mathbf{T}} = \hat{\mathbf{N}}_1 = 44^\circ$ [alt/verw $\angle s/e$; KT NM]	$\checkmark S \checkmark R$ (2)
8.1.4 $ \hat{\mathbf{L}}_2 = \hat{\mathbf{K}}_2 + \hat{\mathbf{T}} \qquad [\text{ext} \angle \text{ of } \Delta/\text{buite} \angle \nu \Delta] $ $ = 40^\circ + 44^\circ $ $ = 84^\circ $	✓R ✓s
8.1.5 In Δ KLM: $44^\circ + 84^\circ + 40^\circ + \hat{L}_1 = 180^\circ \ [\angle s \text{ sum in } \Delta / \angle e \text{ som in } \Delta]$	(2)
$\therefore \hat{L}_1 = 12^{\circ}$	✓ _S (1)

B D D D D D D E	
9.1 ABCD is a m [diags of quad bisect each other/ hoekl v vh halveer mekaar] ✓ R	(1)
9.2 $\frac{\text{ED}}{\text{DB}} = \frac{\text{FE}}{\text{AF}}$ [Prop Th/ <i>Eweredigh st</i> ; DF BA] $\checkmark \text{S} \checkmark \text{R}$ $\frac{\text{ED}}{\text{DB}} = \frac{\text{GE}}{\text{CG}}$ [Prop Th/ <i>Eweredigh st</i> ; DG BC] $\checkmark \text{S} \checkmark \text{R}$	(1)
9.3 $\frac{FE}{AF} = \frac{GE}{CG}$ [proved/bewys]	(4)
$\therefore AC \mid \mid FG \qquad [line divides two sides of \Delta in prop/ $	
$ \begin{array}{c} C_2 = F_2 & [alt/verw \ \ \ \ S \\ \hat{A}_1 = \hat{C}_2 & [alt/verw \ \ \ \ S / e; \ AB \ \ \ CD] \\ \therefore & \hat{A}_1 = \hat{F}_2 \end{array} $	(5)
9.4 $ \hat{A}_1 = \hat{A}_2 \qquad [diags of rhombus/hoekl v ruit] \qquad \checkmark S \\ \hat{A}_2 = \hat{F}_2 \qquad [\hat{A}_1 = \hat{F}_2] \qquad \checkmark S \\ \therefore ACGF = cyc quad/kdvh \qquad [\angle s in the same seg =/ \\ \angle e in dies segm =] \qquad \checkmark R $	(3)
OR/OF	
$\hat{C}_2 = \hat{A}_2 \qquad [\angle s \text{ opp equal sides of rhombus/} \\ \angle e \text{ to gelyke sye v ruit}] \\ \hat{A}_1 = \hat{C} \qquad [alt/vanv \langle s/a; AC EC] \end{cases} $	
$A_2 = G_2 \qquad [ait ver w-2s/e, AC FO]$ $\therefore \hat{C}_2 = \hat{G}_2 \qquad \checkmark S$ $\therefore ACGF \text{ is a cyc quad/kdyh} [/s in the same seg =/$	
$\angle e \text{ in dies segm =}$	(3)
	[13]

10.2.3	In ΔRVS and/ <i>en</i> ΔRST : $\hat{VSR} = \hat{STR} = 0.0^{\circ}$	[(in somi simela/ (in halfinkal]	/S / D
	$\hat{\mathbf{P}}$ is common/gamage	[2 in semi-circle/2 in naijstrket]	V S V K V S & /·/·/
	$\hat{V} = \hat{TSP}$		OR/ <i>OF</i>
	$\therefore \Delta RVS \Delta RST$	$[\angle, \angle, \angle]$	3 angles/hoeke
			(3
10.2.4	In Δ RTS and/ <i>en</i> Δ STV:		✓ΔRTS & ΔSTV
	$RTS = VTS = 90^{\circ}$	$[\angle s \text{ on straight line}/\angle e \text{ op rt lyn}]$	√S
	$\hat{R} = 90^\circ - T\hat{S}R$		√S
	$= T\hat{S}V$		✓S (with
	TSR = V $\therefore \Delta RTS \Delta STV$	$[\angle, \angle, \angle]$	justification/met motivering)
	$\therefore \frac{RT}{CT} = \frac{TS}{VT}$		✓ΔRTS ΔSTV
	\therefore ST ² = VT.TR		√ratio/verh
			(6
			[21

FEB/MAR 2015

QUEST	ION/VRAAG 7		
	A M A B P		
7.1	MB = 10 cm	✓ answer/antw	(1)
7.2	line from centre to midpoint of chord is perpendicular to chord/lyn vanaf midpt na midpt van koord is loodreg op koord	✓ answer/antw	(1)
	OR/OF line from centre bisects chord/lyn vanaf midpt halveer koord	✓ answer/antw	(1)
7.3	$\frac{MP}{OM} = \frac{5}{2}$	$\checkmark \frac{x + OP}{x} = \frac{5}{2}$	(-/
	$\frac{x + OP}{x} = \frac{5}{2}$ $2x + 2OP = 5x$ $OP = \frac{3x}{2}$	$\checkmark \text{ OP} = \frac{3x}{2}$	(2)
	2 OR/ <i>0F</i>	$\checkmark \frac{OP}{OM} = \frac{3}{2}$	
	$\frac{OP}{OM} = \frac{3}{2}$ $OP = \frac{3x}{2}$	$\checkmark \text{ OP} = \frac{3x}{2}$	(2)

7.4	$OM^2 + MB^2 = OB^2$	
	$x^2 + 10^2 = \left(\frac{3x}{2}\right)^2$	✓ subst into/ <i>subst</i> Pythagoras
	$4x^2 + 400 = 9x^2$	$\checkmark 4x^2 + 400 = 9x^2$
	$5x^2 = 400$	
	$x^2 = 80$	
	$x = 8,94$ or $4\sqrt{5}$ or $\sqrt{80}$	✓ answer/antw
		(3)
L		[7]

QUEST	ION/VRAAG 8	
		D
8.1.1	$\hat{D} = \frac{1}{2}\hat{O}_1 = 55^\circ \ (\angle \text{ at centre}=2 \times \angle \text{ at circ}/\angle by \ midpt=2 \times \angle by \ omt)$	✓ S ✓ R (2)
8.1.2	$\hat{A} = \frac{1}{2}\hat{O}_1 = 55^\circ \ (\angle \text{ at centre}=2 \times \angle \text{ at circ}/\angle by \ midpt=2 \times \angle by \ omt)$	✓ S ✓ R (2)
	OR/OF	
	$\hat{A} = \hat{D} = 55^{\circ}$ ($\angle s$ in same segment/ $\angle e$ in dieselfde segment)	✓ S ✓ R (2)
8.1.3	$\hat{B}_1 = \hat{D} = 55^\circ$ (alternate $\angle s/verwiss \angle e$; AB DC)	✓ S ✓ R
	$E_2 = B_1 + A (ext \angle of \Delta = sum of opp \angle buite \angle v \Delta = som v \ tos \angle e)$ = 55° + 55°	× K
	$\hat{E}_2 = 110^{\circ}$	✓ answer/antw
8.2	$\hat{E}_2 = \hat{O}_1 = 110^\circ$ (proven in/bewys in 8.1.3)	√S (4)
	BEOC is a cyclic quadrilateral (equal \angle s subtended by line/ <i>gelyke</i> \angle e ondersnan deur hyn)	✓R (2)
	geiyke Ze onderspan deur tyn)	[10]

the interior oppo	site angle/ <i>die teenoorstaande binnehoek</i> .	✓ answer/antw (1
	S O O V	
	$\frac{2}{1}$	
Construction: L Konstruksie: Tr	T R raw diameter CT and join CV. ek middellyn CT en verbind CV.	
Construction: D Konstruksie: Tr $\hat{V}_1 + \hat{V}_2 = 90^{\circ}$	$\frac{2}{T}$ T R T R T R T R T R T R T R T R T R T	✓ S ✓ R
Construction: D Konstruksie: Tr $\hat{V}_1 + \hat{V}_2 = 90^{\circ}$ $\hat{T}_2 = 90^{\circ} - x$	$\frac{2}{T}$ T R raw diameter CT and join CV. ek middellyn CT en verbind CV. $\angle \text{ in semi-circle}/\angle \text{ in halfsirkel}$ Tangent \perp diameter/radius/raaklyn \perp middellyn/radius	✓ S ✓ R ✓ R
Construction: D Konstruksie: Tr $\hat{V}_1 + \hat{V}_2 = 90^{\circ}$ $\hat{T}_2 = 90^{\circ} - x$ $\therefore \hat{C} = x$	$\frac{2}{T}$ T R T R T R T R T R T R T R T R T R T	✓ S ✓ R ✓ R ✓ S
Construction: E Konstruksie: Tr $\hat{V}_1 + \hat{V}_2 = 90^{\circ}$ $\hat{T}_2 = 90^{\circ} - x$ $\therefore \hat{C} = x$ $\therefore \hat{S} = x$	$\frac{2}{T}$ T R T R T R T R T R T R T R T R T R T	✓ S ✓ R ✓ R ✓ S ✓ R ✓ R

9.3.3(b)	$\hat{T}_{2} = \hat{S}_{2} = 80^{\circ}$	$(ext \angle of cyclic quad/\mathit{buite} \angle \mathit{van} \mathit{koordevh})$	✓ S ✓ R
	$V + \hat{W}_4 = \hat{T}_2$	$(ext \angle of \Delta/buite \angle van \Delta)$	× S
	$\therefore \hat{V} = 50^{\circ}$		✓ S
			(4)
9.3.4	In ΔRVW and/ <i>en</i> ΔI	RWS:	✓ using the correct Δs/ gebruik korrekte Δe
	$\hat{R}_2 = \hat{R}_3 = 30^\circ$	(proven/bewys in 9.3.1)	✓ S
	$\hat{V} = \hat{W}_2 = 50^{\circ}$	(proven/bewys in 9.3.3)	✓ S
	$\hat{VWR} = \hat{S}_1$	$(3rd \angle in \Delta)$	✓ R
	∴ ARVW ARWS	$(\angle \angle \angle)$	$(3rd \angle in \Delta)$ or $(\angle \angle \angle)$
	$\therefore \frac{WR}{RV} = \frac{RS}{WR}$	$(\Delta RVW \Delta RWS)$	✓ S
	\therefore WR ² = RV.RS		(5)
L	1		[22]

QUESTION/VRAAG 10	
R P M	
10.1.1 corresponding $\angle s/ooreenkomstige \angle e$; PN RT	✓ answer/ <i>antw</i> (1)
10.1.2 $\angle; \angle; \angle \text{ OR/}OF \ \angle; \angle$	\checkmark answer/antw (1)
$10.2 \qquad \frac{PM}{RM} = \frac{PN}{RT} \qquad (\Delta PNM \Delta RTM)$ $= \frac{PN}{PN}$	✓ S
$=\frac{1}{2}$	
$\frac{10.3}{10.3} = \frac{PM}{RM} = \frac{1}{3} \therefore \frac{RP}{RM} = \frac{2}{3}$ $PN^{2} = PN^{2} = (PM^{2} + NM^{2}) (DM^{2} + NM^{2}) (D-4L)$	 ✓ Use of Pyth. for RN² and PN² 3
$= RM^{2} - PM^{2}$ $(3 - 1)^{2} (1 - 1)^{2}$	$\checkmark RM = \frac{3}{2}RP$
$= \left(\frac{3}{2}RP\right) - \left(\frac{1}{2}RP\right)$	$\sqrt{\frac{9}{2}} RP^2 & \frac{1}{2} RP^2$
$= \frac{1}{4}RP^2 - \frac{1}{4}RP^2$ $= 2RP^2$	$\begin{array}{c} 4 & 4 \\ 4 & 4 \end{array} $
OR/OF	

QUESTION/VRAAG 9	
9.1	
A D B C	
9.1.1 Same base (DE) and same height (between parallel lines) Dieselfde basis (DE) en dieselfde hoogte (tussen ewewydige lyne)	✓ same base/dies basis between lines/ tussen lyne (1)
9.1.2 $\frac{AD}{DB}$ $\frac{\frac{1}{2}AE \times k}{\frac{1}{2}EC \times k}$ But/Maar area ΔDEB = area ΔDEC (Same base and same height/digselfde basis en digselfde hoogte)	✓ S ✓ S ✓ S
$\therefore \frac{\text{area } \Delta \text{ADE}}{\text{area } \Delta \text{DEB}} = \frac{\text{area } \Delta \text{ADE}}{\text{area } \Delta \text{DEC}}$ $\therefore \text{ AD } \text{ AE}$	✓ R ✓ S
$\overline{DB} = \overline{EC}$	(5)

9.2			
	A	F G M C	
9.2.1	$\frac{EM}{AM} = \frac{FD}{AD}$	(Line parallel one side of Δ OR prop th; EF BD)	✓ S ✓R
	$\frac{\mathrm{EM}}{\mathrm{AM}} = \frac{3}{7}$	OF eweredigst; EF BD)	✓ answer/antw
9.2.2	$\frac{CM = AM}{\frac{CM}{ME}} = \frac{AM}{ME} = \frac{7}{3}$	diags of parm bisect/hoekl parm halv) (from 9.2.1/vanaf 9.2.1)	$\checkmark S \checkmark R$ $\checkmark answer/antw$ (3)
9.2.3	$h \text{ of } \Delta \text{FDC} = h \text{ of } \Delta \text{BDC}$	(AD BC)	✓ AD BC
	$\frac{\text{area } \Delta \text{FDC}}{\text{area } \Delta \text{BDC}} = \frac{\frac{1}{2} \text{FD.}h}{\frac{1}{2} \text{BC.}h}$ $= \frac{\text{FD}}{\text{AD}}$ $= \frac{3}{7}$	(opp sides of parm =) (tos sye v parm =)	 ✓ subst into area form/ subst in opp formule ✓ S ✓ answer/antw (4)
	OR/OF		
	$\frac{\text{area }\Delta \text{FDC}}{\text{area }\Delta \text{ADC}} = \frac{\text{FD}}{\text{AD}} = \frac{3}{7}$	(same heights) (dieselfde hoogtes)	✓ S ✓ R
	But Area \triangle ADC = Area \triangle B	DC (diags of parm bisect area) (hoekl v parm halv opp)	✓ S
	$\frac{\text{area } \Delta \text{FDC}}{\text{area } \Delta \text{BDC}} = \frac{3}{7}$		✓ answer/antw (4) [16]

QUEST	TON/VRAAG 10			
	X W^2 x R^4 y R^1	P 12 12 34 2 34	l 3 Q	
10.1.1	Tangent chord theorem/Raaklyn-ka	oordstelling	✓ R	(1)
10.1.2	Tangent chord theorem/Raaklyn-k	oordstelling	✓ R	(1)
10.1.3	Corresponding angles equal/Ooree	enkomstige ∠e gelyk	✓ R	(1)
10.1.4	\angle s subtended by chord PQ OR	\angle s in same segment	✓ R	(1)
10.1.5	alternate $\angle s/verwisselende \angle e$; W	T SP	✓ R	(1)
10.2	$\frac{RW}{RS} = \frac{RT}{RP}$ (Lin $\therefore RT = \frac{WR.RP}{RS}$ (Lyn ewe	The parallel one side of \triangle OR th; WT SP) the ewewydig aan sy v \triangle OF the event of Δ OF	✓ S ✓ R	(2)
	OR/OF ΔRTW ΔRPS (∠; $\therefore \frac{RW}{RS} = \frac{RT}{RP}$ (ΔR ²) $\therefore RT = \frac{RW.RP}{RS}$	∠; ∠) TW ΔRPS)	✓ S ✓ S	(2)
10.3	$y = \hat{T}_2 = \hat{R}_3 \qquad (tan)$ $y = \hat{R}_3 = \hat{Q}_1 \qquad (\angle s = seg$	chord theorem/ <i>Rkl-koordst</i>) in same segment/∠e in dieselfde gnent)	$\checkmark S \checkmark R$ $\checkmark S \checkmark R$	(4)

10.6	RT RS		✓ S
	$\frac{1}{RQ} = \frac{1}{RP}$	$(\Delta RTS \Delta RQP)$	
	$\frac{RS}{RS} \times \frac{RS}{RS} = \frac{RT}{RS} \times \frac{RS}{RS}$		$\checkmark \times \frac{RS}{PP}$ on both
	RP RP RQ RP		sides
	$\left(\frac{\mathrm{RS}}{\mathrm{RP}}\right)^2 = \left(\frac{\mathrm{RT}}{\mathrm{RP}}\right)\left(\frac{\mathrm{RS}}{\mathrm{RQ}}\right)$		
	$= \left(\frac{RW}{RS}\right) \left(\frac{RS}{RQ}\right)$	(proven in 10.2/bewys in 10.2)	$\checkmark \left(\frac{RI}{RP}\right) \left(\frac{RS}{RQ}\right)$ (3)
	$=\frac{RW}{RQ}$		
	$\frac{OR/OF}{RQ} = \frac{RS}{RP}$	$(\Delta RTS \Delta RQP)$	✓ S
	But $RT = \frac{WR.RP}{RS}$	(proven in 10.2/bewys in 10.2)	\checkmark RT = $\frac{WR.RP}{RS}$
	$\therefore \frac{RT}{RQ} = \frac{WR.RP}{RQ.RS} = \frac{RS}{RP}$		✓multiplication/
	$WR.RP^{-} = RQ.RS^{-}$		vermenigvuldig
	$\therefore \frac{WR}{RQ} = \frac{RS}{RP^2}$		(3)
	OR/OF		
	$\frac{RT}{RS} = \frac{RQ}{RP}$ $RQ = \frac{RT.RP}{RC}$	$(\Delta RTS \Delta RQP)$	✓ S
	and WR = $\frac{RT.RS}{RP}$	(proven in 10.2/bewys in 10.2)	\checkmark WR = $\frac{\text{RT.RS}}{\text{RP}}$
	$\frac{WR}{RQ} = \frac{\frac{RT.RS}{RP}}{\frac{RT.RP}{RT.RP}}$		
	RS RTRS RS		✓ simplification/
	$=\frac{RTRB}{RP}\times\frac{RB}{RT.RP}$		vereenvoudiging
	$=\frac{KS}{RP^2}$		
			(3) [20]