Gr 11

Identities and Reduction Formula Exercises

Exercise 1

Without using a calculator, determine the value of:

1. $\cos 150^{\circ}$
2. $\sin \left(-45^{\circ}\right)$
3. $\tan 480^{\circ}$

Solutions

1. $\cos 150^{\circ}$
$=\cos \left(180^{\circ}-30^{\circ}\right)$
$=-\cos 30^{\circ}$,
$=-\frac{\sqrt{3}}{2} \Omega(2)$
2. $\sin \left(-45^{\circ}\right)$
$=-\sin 45^{\circ} \quad \checkmark$
$=-\frac{1}{\sqrt{2}} \sqrt{ }(2)$
3. $\tan 480^{\circ}$
$=\tan \left(480^{\circ}-360^{\circ}\right)$
$=\tan 120^{\circ} \checkmark \quad$ quadrant II, rewrite as $(180-$?)
$=\tan \left(180^{\circ}-60^{\circ}\right) \quad \tan \theta$ negative
$=-\tan 60^{\circ} \checkmark \quad$ special ratios
$=-\sqrt{3} \quad /(3)$
rewrite as $(180-?)$
quadrant II, $\cos \theta$ negative
special ratios
$\sin (-\theta)=-\sin \theta ;$ quadrant IV, $\sin \theta$ negative special ratios
write as an angle in the first rotation of 360°

Exercise 2

Write the trig ratios as the trig ratios of their co-functions:

1. $\sin 50^{\circ}$
2. $\cos 70^{\circ}$
3. $\sin 100^{\circ}$
4. $\cos 140^{\circ}$
[4]

Solutions

1. $\sin 50^{\circ}=\sin \left(90^{\circ}-40^{\circ}\right)=\cos 40^{\circ} \Omega$
2. $\cos 70^{\circ}=\cos \left(90^{\circ}-20^{\circ}\right)=\sin 20^{\circ}$
3. $\sin 100^{\circ}=\sin \left(90^{\circ}+10\right)=\cos 10^{\circ} \Omega$
4. $\cos 140^{\circ}=\cos \left(90^{\circ}+50^{\circ}\right)=-\sin 50^{\circ}$

NOT ALWAYS SPECIAL ANGLES

Co.Functions

The functions change from cos to sin or sin to cos if we use $90^{\circ}+$ or 90°. to reduce, The signs of whether the function is positive or negative may also change.
$\sin \left(90^{\circ}-\theta\right)=\cos \theta$
(quadrantl)
$\sin \left(90^{\circ}+\theta\right)=\cos \theta$
(sin θ positive in quadrant II)
$\cos \left(90^{\circ}-\theta\right)=\sin \theta$
$\cos \left(90^{\circ}+\theta\right)=-\sin \theta$
(quadrantl)
(cos θ negative in quadrant II)

SOME OTHER POSSIBILITIES THAT COULD COME UP

ITNEEDS TO BE $90^{\circ}+$ or 90°. in order to use the co.function reduction formula

$$
\begin{aligned}
\sin \left(\theta-90^{\circ}\right) & \left.=\sin \left[-90^{\circ}-\theta\right)\right] & & \\
& =-\sin \left(90^{\circ}-\theta\right) & & \text { (sinmon factor of }-1) \\
& =-\cos \theta & & \\
\cos \left(\theta-90^{\circ}\right) & =\cos \left[-\left(90^{\circ}-\theta\right)\right] & & \text { (comme in quadrantII) } \\
& =+\cos \left(90^{\circ}-\theta\right) & & (\cos \theta \text { positive of in quadrant } 1)
\end{aligned}
$$

Answers

1. $\frac{\sin \left(180^{\circ}+x\right) \cdot \cos 330^{\circ} \cdot \tan 150^{\circ}}{\sin x}$
$=\frac{(-\sin x)\left(+\cos 30^{\circ}\right)\left(-\tan 30^{\circ}\right)}{\sin x}$
reduction formulae in numerator
$=\frac{+\sin x \cdot \frac{\sqrt{3}}{2} \sqrt{ } \cdot \frac{\sqrt{3}}{3}}{\sin x}$
(use brackets to separate ratios)
special angles
$=\frac{\sqrt{3}}{2} \cdot \frac{\sqrt{3}}{3}$
$=\frac{3}{6}=\frac{1}{2}$
2. $\frac{\cos 750^{\circ} \cdot \tan 315^{\circ} \cdot \cos (-\theta)}{\cos \left(360^{\circ}-\theta\right) \cdot \sin 300^{\circ} \cdot \sin \left(180^{\circ}-\theta\right)}$ use reduction formulae
$=\frac{\cos 30^{\circ} \checkmark \cdot\left(-\tan 45^{\circ}\right) \sqrt{2} \cdot \cos \theta \checkmark}{\cos \theta \sqrt{ } \cdot\left(-\sin 60^{\circ}\right) \checkmark \cdot \sin \theta \checkmark} \quad$ use special angles
$=\frac{\frac{\sqrt{3}}{2} \cdot(-1) \cos \theta}{\cos \theta \cdot\left(-\frac{\sqrt{3}}{2}\right) \sin \theta} \checkmark$
$=\frac{-1}{-\sin \theta}=\frac{1}{\sin \theta}$
3. $\frac{\tan 480^{\circ} \cdot \sin 300^{\circ} \cdot \cos 14^{\circ} \cdot \sin \left(-135^{\circ}\right)}{\sin 104^{\circ} \cdot \cos 225^{\circ}}$
$=\frac{\tan 120^{\circ} \cdot(-\sin 60) \sqrt{ } \cdot \cos 14^{\circ} \cdot \sin 225^{\circ}}{\sin 76^{\circ} \sqrt{ } \cdot\left(-\cos 45^{\circ}\right) \checkmark}$
$=\frac{\cos \left(180^{\circ}+80^{\circ}\right) \cdot \cos \left(180^{\circ}-10^{\circ}\right)}{\sin 10^{\circ} \cdot \sin \left(180^{\circ}+10^{\circ}\right) \cdot \cos \left(360^{\circ}-10^{\circ}\right)}$
$=\frac{\left(-\tan 60^{\circ}\right) / \cdot\left(-\sin 60^{\circ}\right) \cdot \sin 76^{\circ} / \cdot\left(-\sin 45^{\circ}\right) /}{\sin 76^{\circ} \cdot\left(-\cos 45^{\circ}\right)}$
$=\frac{(-\sqrt{3}) \cdot\left(\frac{-\sqrt{3}}{2}\right) \cdot \sin 76 \cdot\left(\frac{-\sqrt{2}}{2}\right)}{\sin 76^{\circ} \cdot\left(\frac{-\sqrt{2}}{2}\right)}$
4. $\frac{\cos 260^{\circ} \cdot \cos 170^{\circ}}{\sin 10^{\circ} \cdot \sin 190^{\circ} \cdot \cos 350^{\circ}}$
$=\frac{-\cos 80^{\circ} / \cdot\left(-\cos 10^{\circ}\right)}{\sin 10^{\circ} \cdot\left(-\sin 10^{\circ}\right) / \cdot \cos 10^{\circ} /}$
$=\frac{(-\sqrt{3}) \cdot\left(\frac{-\sqrt{3}}{2}\right) \cdot \sin 76 \cdot\left(\frac{-\sqrt{2}}{2}\right)}{\sin 76^{\circ} \cdot\left(\frac{-\sqrt{2}}{2}\right)} \Omega \checkmark$
$=\frac{-\sin 10^{\circ} / \cdot\left(-\cos 10^{\circ}\right)}{\sin 10^{\circ} \cdot\left(-\sin 10^{\circ}\right) \cdot \cos 10^{\circ}}$
$=\frac{-1}{\sin 10^{\circ}}$
$=\frac{3}{2}$
