## Trigonometry Exercises

3.Given $7 \sin \alpha=3$ for $\alpha>90^{\circ}$.

Determine the following (leave answers in surd form):
a) $\cos 2 \alpha$

Draw a sketch.

4.If $4 \tan A+3=0$ for $A<270^{\circ}$. determine, without the use of a calculator:

$$
\left(\sin \frac{A}{2}-\cos \frac{A}{2}\right)\left(\sin \frac{A}{2}+\cos \frac{A}{2}\right)
$$

Draw a sketch.


We are given that $A<270^{\circ}$, therefore $A$
must lie in the second quadrant for the tangent function to be negative.

$$
\begin{aligned}
r^{2} & =3^{2}+(-4)^{2}=25 \\
\therefore r & =5 \\
& \left(\sin \frac{A}{2}-\cos \frac{A}{2}\right)\left(\sin \frac{A}{2}+\cos \frac{A}{2}\right) \\
& =\sin ^{2} \frac{A}{2}-\cos ^{2} \frac{A}{2} \\
& =-\left(\cos ^{2} \frac{A}{2}-\sin ^{2} \frac{A}{2}\right) \\
& =-\cos 2\left(\frac{A}{2}\right) \\
& =-\cos A \\
& =-\left(-\frac{4}{5}\right)
\end{aligned}
$$

## c)

$\cos x \cos 10^{\circ}+\sin x \cos 100^{\circ}=1-2 \sin ^{2} x$

$$
\begin{aligned}
\cos x \cos 10^{\circ}+\sin x \cos 100^{\circ} & =1-2 \sin ^{2} x \\
\cos x \cos 10^{\circ}+\sin x \cos \left(90^{\circ}+10^{\circ}\right) & =\cos 2 x \\
\cos x \cos 10^{\circ}-\sin x \sin 10^{\circ} & =\cos 2 x \\
\cos \left(x+10^{\circ}\right) & =\cos 2 x \\
\text { First quadrant: } x+10^{\circ} & =2 x+k \cdot 360^{\circ} \\
x & =10^{\circ}+k \cdot 360^{\circ}
\end{aligned}
$$

Fourth quadrant: $x+10^{\circ}=\left(360^{\circ}-2 x\right)+k$.

$$
\begin{aligned}
3 x & =350^{\circ}+k \cdot 360^{\circ} \\
\therefore x & =116,7^{\circ}+k \cdot 120^{\circ}
\end{aligned}
$$

$$
\text { Final answer: } x=10^{\circ}+k \cdot 360^{\circ}
$$

d) $6 \sin ^{2} \alpha+2 \sin 2 \alpha-1=0$

$$
\begin{aligned}
6 \sin ^{2} \alpha+2 \sin 2 \alpha-1 & =0 \\
6 \sin ^{2} \alpha+2(2 \sin \alpha \cos \alpha)-1 & =0 \\
6 \sin ^{2} \alpha+4 \sin \alpha \cos \alpha-\left(\sin ^{2} \alpha+\cos ^{2} \alpha\right) & =0 \\
6 \sin ^{2} \alpha+4 \sin \alpha \cos \alpha-\sin ^{2} \alpha-\cos ^{2} \alpha & =0 \\
5 \sin ^{2} \alpha+4 \sin \alpha \cos \alpha-\cos ^{2} \alpha & =0 \\
(5 \sin \alpha-\cos \alpha)(\sin \alpha+\cos \alpha) & =0 \\
\text { If } 5 \sin \alpha-\cos \alpha & =0 \\
5 \sin \alpha & =\cos \alpha \\
\therefore \tan \alpha & =\frac{1}{5} \\
\therefore \alpha & =11,3^{\circ}+k .
\end{aligned}
$$

