GRADE 12

REVISION OF PAST PAPERS FOR PRACTICE

November 2019 PAST PAPER

ANSWERS

QUESTION 1 OF 2019 FINAL EXAM QUESTION/VR4.4G I

1.1.1	$x^2 + 5x - 6 = 0$		
	(x+6)(x-1)=0	√ factors	
	x = -6 or $x = 1$	√ x = -6 √ x = 1 (3)	
1.1.2	$4x^{2} + 3x - 5 = 0$ $x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$ $x = \frac{-3 \pm \sqrt{(3)^{2} - 4(4)(-5)}}{2(4)}$ $x = \frac{-3 \pm \sqrt{89}}{8}$	✓substitution into the correct formula	
	x = -1.55 or $x = 0.8$	$\checkmark x = -1,55 \checkmark x = 0,8 (3)$	
1.1.3	$4x^2 - 1 < 0$ (2x+1)(2x-1) < 0	√ factors	
	$\frac{-1}{2} < x < \frac{1}{2}$	✓method ✓answer (3)	$\sqrt{(\sqrt{32}+x)(\sqrt{32}+x)}$
1.1.4	$\left(\sqrt{\sqrt{32}+x}\right)\left(\sqrt{\sqrt{32}-x}\right)=x$		DIFFERENCE OF TWO SQUARE BY USING DISTRIBUTIVE LAW
	$\sqrt{32 - x^2} = x$ $32 - x^2 = x^2$	$\sqrt{32-x^2}$ ✓ squaring both sides	$\sqrt{32 - x^2}$
	$-2x^2 = -32$ $x^2 = 16$ $x = \pm 4$	$\sqrt{x^2} = 16$	
	$\therefore x = 4$	$\checkmark x = 4 \text{ (selection)}$ (4)	

12	y+x=12	<u> </u>
1.2	*	Combined of the formal
	y = -x+12(I)	✓y subject of the formula
	xy = 14 - 3x(2)	
	Sub (1) into (2)	
	x(-x+12) = 14-3x	✓ substitution
	$-x^2 + 12x - 14 + 3x = 0$	
	$-x^2 + 15x - 14 = 0$	
	$x^2 - 15x + 14 = 0$	√simplification
	(x-14)(x-1) = 0	
	x = 14 or $x = 1$	✓both values of x
	y = -2 or y = 11	✓both values of y (5)
	OR/OF	OR/OF
	y+x=12	
	x = -y + 12(1)	√x subject of the formula
	xy = 14 - 3x(2)	-
	Sub (1) into (2)	
	y(-y+12) = 14-3(-y+12)	√ substitution
	$12y - y^2 - 14 + 36 - 3y = 0$	√ simplification
	$-y^2 + 9y + 22 = 0$ $y^2 - 9y - 22 = 0$	
	(y+2)(y-11)=0	
	y = -2 or $y = 11$	✓both values of y
	x-14 or x-1	✓both values of x (5)
1.3	3 6 9 12 15 18 21 24 27 30	✓ identifying multiples of 3
	3 3 3 3 3 3 3 3 3 3	√ten multiples of 3
	∴ k =14	✓ powers of 3
		✓ answer (4)
		[22]

QUESTION 2 OF 2019 FINAL EXAM

QUESTION/VR44G2

2.1.1	11ON/VR44G 2 209 : 186	√209 √186	<i>(</i> 20)
		▼ 209 ▼ 180	(2)
2.1.2	321 ; 290 ; 261 ; 234 1st diff -31 -29 -27		
	2nd diff 2 2	√ 2 nd diff = 2	
	2a = 2 $3a + b = -31$ $a + b + c = 321a = 1$ $3(1) + b = -31$ $1 + (-34) + c = 321b = -34$ $c = 354$	$\sqrt{a} = 1$ $\sqrt{b} = -34$ $\sqrt{c} = 354$	
	$T_n = n^2 - 34n + 354$		(4)
2.1.3	$n^2 - 34n + 354 = 74$	✓equating T _n to 74	
	$n^2 - 34n + 280 = 0$	√standard form	
	(n-14)(n-20) = 0		
	n = 14 or n = 20	√14 √ 20	(4)
2.1.4	f'(n) = 0 2n - 34 = 0 2n = 34 n = 17	√2n-34=0	
	Term 17 will have the smallest value	√answer	(2)
	OR/OF	OR/OF	
	$n = \frac{-b}{2a}$ $n = \frac{34}{2}$ $n = 17$	√substitution	
	Term 17 will have the smallest value	√answer	(2)
	OR/OF	OR/OF	
	$n = \frac{14 + 20}{2} = 17$	√substitution	
	Term 17 will have the smallest value	✓answer	(2)

<u> </u>		
2.2.1	$a - \frac{5}{8}$; $r - \frac{1}{2}$; $n - 21$	√7
	$S_n = \frac{a(1-r^n)}{1-r}$	
	$S_{21} = \frac{\frac{5}{8} \left(1 - \left(\frac{1}{2}\right)^{21}\right)}{1 - \frac{1}{2}}$	✓ substitution into the
	$\frac{1-\frac{1}{2}}{1-\frac{1}{2}}$	correct formula
	-1,2499 ²	
	-1,25	✓ answer (3)
2.2.2	$T_{*} > \frac{5}{8102}$	
	$ar^{-1} > \frac{5}{8192}$	✓ substitution into the correct formula
		Тогиниа
	$\frac{5}{8}\left(\frac{1}{2}\right)^{-1} > \frac{5}{8192}$	
	$\left(\frac{1}{2}\right)^{n-1} > \frac{1}{1024}$	✓ method /same base or log
	$\left(\frac{1}{2}\right)^{n-1} > \left(\frac{1}{2}\right)^{10}$ or $2^{-n+1} > 2^{-10}$	
	∴ n-1<10 -n+1>-10 n<11 n<11	✓calculating n
	∴n=10 ∴n=10	✓ answer
		(4)
	OR/OF	OR/OF
	8;16;32;;8192	
	8.2 ⁿ⁻¹ <8192	✓ substitution into the correct
	2 ⁿ⁻¹ < 1024	formula
	2 ⁿ⁻¹ < 2 ¹⁰	✓ method
	n-1<10	
	n<11	✓calculating n
	$\therefore n=10$	✓ answer (4)
		[19]