Topic 8: Quantitative aspects of chemical change - Questions MULTIPLE CHOICE QUESTIONS

1 The molar mass of sodium sulphate is
A $\quad 70 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$
B $\quad 98 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$
C $\quad 119 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$
D $\quad 142 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$
[CL2] (2)

2 During a reaction 0,02 moles of magnesium were ignited in excess oxygen at standard temperature and pressure. The reaction that occurred is shown below:

$$
2 \mathrm{Mg}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{MgO}(\mathrm{~s})
$$

The volume of O_{2} that reacted with the magnesium was
A $\quad 0,320 \mathrm{dm}^{3}$
B $\quad 0,160 \mathrm{dm}^{3}$
C $0,224 \mathrm{dm}^{3}$
D $\quad 0,224 \mathrm{~cm}^{3}$
[CL2] (2)

3 Consider the reaction:
$\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
If the rate of appearance of CO_{2} is $0,8 \mathrm{~mol} \cdot \mathrm{~s}^{-1}$, the rate of disappearance of O_{2} is:
A $\quad 0,8 \mathrm{~mol} \cdot \mathrm{~s}^{-1}$
B $\quad 0,48 \mathrm{~mol} \cdot \mathrm{~s}^{-1}$
C $\quad 0,27 \mathrm{~mol} \cdot \mathrm{~s}^{-1}$
D $\quad 1,33 \mathrm{~mol} \cdot \mathrm{~s}^{-1}$
[CL2] (2)

4 Which of the following solutions contains the greatest number of dissolved ions?
A $\quad 50 \mathrm{~cm}^{3}$ of $0,1 \mathrm{~mol}^{2} \mathrm{dm}^{-3} \mathrm{LiF}$
B $\quad 100 \mathrm{~cm}^{3}$ of $0,2 \mathrm{~mol}^{2} \mathrm{dm}^{-3} \mathrm{KCl}$
C $\quad 100 \mathrm{~cm}^{3}$ of $0,1 \mathrm{~mol}_{\mathrm{dm}}{ }^{-3} \mathrm{MgCl}_{2}$
D $\quad 50 \mathrm{~cm}^{3}$ of 0,2 mol.dm ${ }^{-3} \mathrm{Na}_{2} \mathrm{O}$
[CL3] (2)
5. Water is formed when oxygen reacts with hydrogen according to the following unbalanced reaction: $\mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}$
What mass of oxygen is required to react completely with 2 g of hydrogen?

A $\quad 12 \mathrm{~g}$
B $\quad 16 \mathrm{~g}$
C $\quad 96 \mathrm{~g}$
D $\quad 144 \mathrm{~g}$
[CL3] (2)
6. Consider beakers A and B below:

$\mathbf{2 0} \mathbf{c m}^{\mathbf{3}}$ of the $\mathrm{NaOH}_{(\text {aq })}$ solution in beaker A is added to the $\mathrm{NaCl}_{(\text {aq) }}$ solution in beaker B. Which one of the following represents the correct calculation for the new concentration of $\mathrm{Na}^{+}{ }_{(\text {aq })}$ ions in beaker B?

A $\frac{0,015+0,005}{0,17}$

B $\frac{0,015+0.05}{0,17}$

C $\frac{0,015 \times 0,05}{0,15}$

D $\frac{0,015+0,005}{0,15}$
[CL4] (2)

LONG QUESTIONS

1 Iron (Fe) reacts with sulphur (S) to form iron sulphide (FeS) according to the following balanced equation:
$\mathrm{Fe}(\mathrm{s})+\mathrm{S}(\mathrm{s}) \rightarrow \mathrm{FeS}$
1.1. Define the term limiting reactant.
[CL1] (2)
1.2. Calculate which of the two substances will be used up completely if 20 g of Fe and 10 g of S are mixed and heated. [CL3] (5)
1.3. How many grams of the other substance are in excess? [CL2] (2)
1.4. Magnesium burns in air to form magnesium oxide according to the following balanced equation:

$$
2 \mathrm{Mg}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{MgO}(\mathrm{~s})
$$

1.5. If the percentage yield of this reaction is only 80%, calculate the mass of magnesium that needs to be burned to produce 30 g of magnesium oxide.

1. A standard solution of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$ is made up so that it will have a volume of $0,25 \mathrm{dm}^{3}$ and a concentration of $0,5 \mathrm{~mol}_{\mathrm{dm}}{ }^{-3}$.

The standard solution is made up using distilled water.
2.1.1 Name the solute used to make this solution.
[CL1] (2)
2.1.2 Calculate the mass of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$ required to make up the standard solution.
[CL2] (4)
2.2 27 g of propane is burnt in air, according to the equation
$\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}$
2.2.1 $27,0 \mathrm{~g}$ of propane is burnt. What mass of CO_{2} will be produced?
2.2.2 What would the volume of this gas be at STP?

3 A learner reacts ethanoic acid and potassium hydroxide. She repeats the experiment, a titration, a number of times until she obtains 3 results that have a high degree of precision. The concentration of the standard KOH solution she uses is $0,1 \mathrm{~mol}_{\mathrm{dm}}{ }^{-3}$. She calculates that the average volume of KOH required to neutralise $25,0 \mathrm{~cm}^{3}$ of vinegar solution is $44,1 \mathrm{~cm}^{3}$.

$$
\mathrm{CH}_{3} \mathrm{COOH}_{(\mathrm{aq})}+\mathrm{KOH}_{(\mathrm{aq})} \longrightarrow \mathrm{CH}_{3} \mathrm{COOK}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}
$$

3.1.1 Explain how the learner will determine whether her results "have a high degree of precision".
3.1.2 Calculate the number of moles of ethanoic acid in the vinegar
solution.
[CL2] (4)
3.1.3 Hence, calculate the mass of ethanoic acid in the vinegar solution.
3.1.4 If 5 g of White Spirit Vinegar was used to make up the $25 \mathrm{~cm}^{3}$ vinegar solution used in the titration, calculate the percentage (by mass) of ethanoic acid in White Spirit Vinegar.
3.2 During her titrations the learner used a burette to measure out the volume of KOH required to neutralise the vinegar solution. Describe two precautions that Mary should take when using the burette to ensure that the measurements that she takes with the burette are as accurate as possible.

4 Magnesium burns in air to form magnesium oxide according to the following balanced equation:

$$
2 \mathrm{Mg}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{MgO}(\mathrm{~s})
$$

If $2,4 \mathrm{~g}$ of magnesium combines with $0,8 \mathrm{~g}$ of oxygen, which is at STP:
4.1 What does STP stand for?
4.2 Calculate how many moles of magnesium and how many moles of oxygen is present.
4.3 Which of the two substances will be used up completely?
4.4 Determine how many moles of the other substance is in excess.
4.5 What mass of product will form?
[CL1] (1)
[CL2] (3)
[CL3] (2)
[CL2] (2)
[CL2] (3)
[11]
$5 \quad 20 \mathrm{~g}$ of impure iron reacts with excess sulphuric acid, releasing $5 \mathrm{dm}^{3}$ of hydrogen gas. The reaction is presented below:

$$
\mathrm{Fe}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{FeSO}_{4}+\mathrm{H}_{2}
$$

5.1.1 Calculate the number of moles of hydrogen gas released.
5.1.2 Write down the number of moles of pure Fe which reacted.
5.1.3 Calculate the percentage purity of the iron.
5.2 Consider the balanced equation shown below. The yield for the production of water is $68,7 \%$.

$$
2 \mathrm{HNO}_{3}+\mathrm{NO} \rightarrow 3 \mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

5.2.1 If $44,1 \mathrm{~g}$ of HNO_{3} reacts completely with nitrogen monoxide, calculate the theoretical mass of water which is produced.
5.2.2 Considering the yield for this reaction ($68,7 \%$), now calculate the actual mass of water which is produced.

6 A standard solution of $\mathrm{Mg}(\mathrm{OH})_{2}$ is made up so that it will have a volume of $0,25 \mathrm{dm}^{3}$ and a concentration of $0,5 \mathrm{~mol}_{\mathrm{dm}}{ }^{-3}$.

The standard solution is made up using distilled water.
6.1 Name the solute used to make this solution.
[CL1] (2)
6.2 Calculate the mass of solid $\mathrm{Mg}(\mathrm{OH})_{2}$ required to make up the standard solution.
[CL2] (6)
6.3 If the solution needed to be diluted to a concentration of $0,2 \mathrm{~mol}^{2} \mathrm{dm}^{-3}$, how much additional distilled water would need to be added? [CL4](4)

