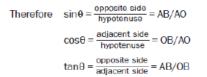
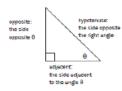
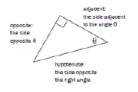

Grade 11 Mathematics

Trig Identities

The trigonometric ratios


Using θ as the reference angle in ΔABO


- The side opposite the 90 ° is the hypotenuse side, therefore side AO is the hypotenuse side.
- The side opposite $\boldsymbol{\theta}$ is the opposite side, therefore AB is the opposite side.
- The side adjacent to θ is called the adjacent side, therefore OB is the adjacent side.



We work with the ratios of the sides of the triangle:

- The ratio $\frac{opposite}{hypotenuse}$ is called sine θ (abbreviated to sin θ)
- The ratio $\frac{\text{adjacent}}{\text{hypotenuse}}$ is called cosine θ (abbreviated to $\cos\theta$)
- The ratio $\frac{\text{opposite}}{\text{adjacent}}$ is called tangent θ (abbreviated to tan $\theta)$

LEARN THESE!!!!!!!

$$\sin \theta = \frac{y}{r} = \frac{\text{opposite}}{\text{hypotenuse}}$$

$$\cos \theta = \frac{x}{r} = \frac{\text{adjacent}}{\text{hypotenuse}}$$

$$\tan \theta = \frac{y}{x} = \frac{\text{opposite}}{\text{adjacent}}$$

Example 1

- 1. AMNP is a right-angled triangle. Write down the trig ratios for:
 - a) sin α
- b) sin β
- c) tan β If MP = 13 and NP = 5, calculate cos β.
- d) cos α
- (4) (3)

[7]

- Answer
- 1. a) $\sin \alpha = \frac{MN}{MP} \checkmark (1)$ b) $\sin \beta = \frac{NP}{MP} \checkmark (1)$

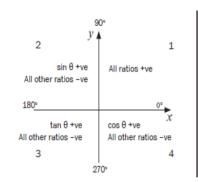
 - c) $\tan \beta = \frac{NP}{MN} \checkmark (1)$ d) $\cos \alpha = \frac{NP}{MP} \checkmark (1)$
- (4)
- 2. MP = 13 and NP = 5, so we can find MP,

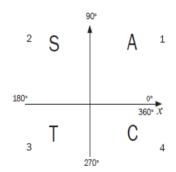
 $MP^2 = MN^2 + NP^2$ Pythagoras \checkmark

 $13^2 = MN^2 + 5^2$

 $169 = MN^2 + 25$

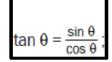
 $MN^2 = 169 - 25$


 $MN^2 = 144 \checkmark$


∴MN = 12

 $\cos \beta = \frac{MN}{MP} = \frac{12}{13} \checkmark$

(3)[7]


Trig Ratios in each quadrant of Cartesian Plane

Identities

QUOTIENT IDENTITY

SQUARE IDENTITY

 $\sin^2\theta + \cos^2\theta = 1$

From the above we can derive the following:

 $\sin^2\theta = 1 - \cos^2\theta$

 $\cos^2\theta = 1 - \sin^2\theta$

Example 2

1. If $\sin \theta$ is negative and $\cos \theta$ is positive, then which statement is true	1.	If $\sin \theta$ is negative an	nd cos θ is po	ositive, then	which statement	t is true
---	----	---------------------------------	----------------	---------------	-----------------	-----------

- A. $0^{\circ} < \theta < 90^{\circ}$
- B. $90^{\circ} < \theta < 180^{\circ}$
- C. $180^{\circ} < \theta < 270^{\circ}$
- D. $270^{\circ} < \theta < 360^{\circ}$
- 2. If $\tan \theta < 0$ and $\cos \theta < 0$, then which statement is true?
 - A. 0° < θ < 90°
- B. $90^{\circ} < \theta < 180^{\circ}$
- C. $180^{\circ} < \theta < 270^{\circ}$
- D. $270^{\circ} < \theta < 360^{\circ}$
- (1) 3. Will the following trig ratios be positive or negative?
 - a) sin 315°
 - b) cos (-215°)
 - c) tan 215°
 - d) cos 390°

<u>Answer</u>

(1)

(4)

[6]

1. Sin θ is negative in 3rd and 4th quadrants; $\cos\theta$ is positive in 1st and

So θ is in the 4th quadrant. D. $270^{\circ} < \theta < 360^{\circ} \checkmark$

2. $\tan \theta < 0$ in 2nd and 4th quadrants; $\cos \theta < 0$ in 2nd and 3rd

So θ is in the 2nd quadrant. B. $90^{\circ} < \theta < 180^{\circ}$ \checkmark (1)

3. a) sin 315° is in 4th quadrant so it is negative. ✓ (1)

(1) b) $\cos{(-215^\circ)}$ is in 2nd quadrant so it is negative. \checkmark

e) tan 215° is in 3rd quadrant, so it is positive. \checkmark (1)

d) cos 390° is the same as cos 30° in the 1st quadrant,

so it is positive. \checkmark (1)

[6]