Grade 10 Mathematics
Analytical Geometry
SUMMARY

MIDPOINT BETWEEN TWO COORDINATES
 ($\mathrm{x}_{1} ; \mathrm{y}_{1}$) and ($\mathrm{x}_{2} ; \mathrm{y}_{2}$)
 $\left(\frac{x_{1}+x_{2}}{2} ; \frac{y_{1}+y_{2}}{2}\right)$

Example 1

Determine the midpoint M between the points $A(-2 ; 1)$ and $B(1 ;-3,5)$

DISTANCE BETWEEN TWO COORDINATES ($x_{1} ; y_{1}$) and ($x_{2} ; y_{2}$) $\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$

Example 2

Determine the length of the line segment (Distance between two points) between the following points:
$P(-3 ; 5)$ and $Q(-1 ;-5)$

GRADIENT BETWEEN TWO COORDINATES
$\left(x_{1} ; y_{1}\right)$ and ($\left.x_{2} ; y_{2}\right)$
Gradient $=\frac{\text { difference in } y}{\text { difference in } x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

Example 3

Determine the gradient of the line segment between the following points:

A (-5; -9) and B(3; 2)

Answer

Example 1

Let the coordinates of A be $\left(x_{1} ; y_{1}\right)$ and the coordinates of B be $\left(x_{2} ; y_{2}\right)$.
$x_{1}=-2 \quad y_{1}=1 \quad x_{2}=1 \quad y_{2}=-3,5$
Substitute values into the mid-point formula:

$$
\begin{aligned}
M(x ; y) & =\left(\frac{x_{1}+x_{2}}{2} ; \frac{y_{1}+y_{2}}{2}\right) \\
x & =\frac{x_{1}+x_{2}}{2} \\
& =\frac{-2+1}{2} \\
& =-0,5
\end{aligned}
$$

Example 2

$$
=\sqrt{(-1+3)^{2}+(-5-5)^{2}}
$$

$$
=\sqrt{(2)^{2}+(-10)^{2}}
$$

$$
=\sqrt{4+100}
$$

$$
=\sqrt{104}
$$

The mid-point is at $M(-0,5 ;-1,25)$.

Example 3

Solution:
Let the coordinates of A be $\left(x_{1} ; y_{1}\right)$ and the coordinates of B be $\left(x_{2} ; y_{2}\right)$

$m_{A B}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
$=\frac{2-(-9)}{3-(-5)}$
$=\frac{11}{8}$

REMEMBER

- Parallel lines have equal Gradients
- Perpendicular Lines

$$
m_{1} \times m_{2}=-1
$$

Example 4:
a. Determine the gradient of the line parallel to $y=3 x+4$
b. Determine the gradient of the line perpendicular to $y=3 x+4$

Answer to Example 4

a. Parallel lines have equal gradients so $m=3$ of other line.
b. $\quad m_{1} \times m_{2}=-1$
$3 \times m_{2}=-1$
$3 m_{2}=-1$
$m_{2}=\frac{-1}{3}=-\frac{1}{3}$

