Grade 10 Mathematics Analytical Geometry SUMMARY

MIDPOINT BETWEEN TWO COORDINATES	DISTANCE BETWEEN TWO COORDINATES (x1; y1) and (x2; y2)	<u>GRADIENT BETWEEN TWO COORDINATES</u> (x ₁ ; y ₁) and (x ₂ ; y ₂)
$\frac{(\mathbf{x}_1; \mathbf{y}_1) \text{ and } (\mathbf{x}_2; \mathbf{y}_2)}{\left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right)}$	$\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$	Gradient = $\frac{difference \text{ in } y}{difference \text{ in } x} = \frac{y_2 - y_1}{x_2 - x_1}$
	Example 2	Example 3
	Determine the length of the line	Determine the gradient of the line segment
Example 1	points) between the following	A (-5: -9) and B (3: 2)
Determine the	points:	, (),), and) (), _,
midpoint M between the points A (-2; 1)	P (-3; 5) and Q (-1; -5)	

<u>Answer</u>

Example 1

Let the coordinates of A be $(x_1; y_1)$ and the coordinates of B be $(x_2; y_2)$.

 $x_1 = -2$ $y_1 = 1$ $x_2 = 1$ $y_2 = -3,5$

Substitute values into the mid-point formula:

$$M(x;y) = \left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right) \qquad y = \frac{y_1 + y_2}{2}$$
$$x = \frac{x_1 + x_2}{2}$$
$$= \frac{-2 + 1}{2}$$
$$= -0.5 \qquad = -1,25$$

Example 2

$$PQ = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$= \sqrt{(-1 + 3)^2 + (-5 - 5)^2}$$

$$= \sqrt{(2)^2 + (-10)^2}$$

$$= \sqrt{4 + 100}$$

$$= \sqrt{104}$$

The mid-point is at M (-0,5; -1,25).

Example 3

Solution: Let the coordinates of A be $(x_1; y_1)$ and the coordinates of B be $(x_2; y_2)$

$$x_1 = -5$$
 $y_1 = -9$ $x_2 = 5$ y_2

$$m_{AB} = rac{y_2 - y_1}{x_2 - x_1} = rac{2 - (-9)}{3 - (-5)} = rac{11}{8}$$

<u>REMEMBER</u>

- Parallel lines have equal Gradients
- Perpendicular Lines $m_1 \times m_2 = -1$

Example 4:

- a. Determine the gradient of the line **parallel** to y=3x+4
- Determine the gradient of the line perpendicular to y=3x+4

= 2

Answer to Example 4

 Parallel lines have equal gradients so m = 3 of other line.

b.
$$m_1 \times m_2 = -1$$

 $3 \times m_2 = -1$
 $3m_2 = -1$
 $m_2 = \frac{-1}{3} = -\frac{1}{3}$