Quantitative aspects of chemical change

Grade 11 August 2020

Representing Chemical change

Balanced chemical equations

- Write and balance chemical equations. Use formulae for reactants and products and indicate the phases in brackets, i.e. (s), (l), (g) and (aq).
- Interpret balanced reaction equations in terms of:
o Conservation of atoms
o Conservation of mass (use relative atomic masses)

Quantitative aspects of chemical change

The mole concept

- Describe the mole as the SI unit for amount of substance.
- Define one mole as the amount of substance having the same number of particles as there are atoms in 12 g carbon-12.
- Describe Avogadro's number, NA, as the number of particles (atoms, molecules, formulaunits) present in one mole ($\mathrm{NA}=6,023 \times 10^{23}$ particles $\cdot \mathrm{mol}^{-1}$).
- Define molar mass as the mass of one mole of a substance measured in $\mathrm{g} \cdot \mathrm{mol}^{-1}$.
- \quad Calculate the molar mass of a substance given its formula.

Molar volume of gases

- \quad State Avogadro's Law, i.e. one mole of any gas occupies the same volume at the same temperature and pressure.
- At STP: 1 mole of any gas occupies $22,4 \mathrm{dm}^{3}$ at $0^{\circ} \mathrm{C}(273 \mathrm{~K})$ and 1 atmosphere ($101,3 \mathrm{kPa}$). Thus the molar gas volume, VM, at STP $=22,4 \mathrm{dm}^{3} \cdot \mathrm{~mol}^{-1}$.

Volume relationships in gaseous reactions

- Interpret balanced equations in terms of volume relationships for gases, i.e. under the same conditions of temperature and pressure, equal amounts (in mole) of all gases occupy the same volume.

Concentration of solutions

- Define concentration as the amount of solute per litre of solution.
- Calculate concentration in mol $\cdot e^{-1}$ (or $\mathrm{mol} \cdot \mathrm{dm}^{-3}$) using. $\mathrm{C}=\frac{n}{v}$

More complex stoichiometric calculations

- Determine the empirical formula and molecular formula of compounds.
- Determine the percentage yield of a chemical reaction.
- Determine percentage purity or percentage composition, e.g. the percentage CaCO^{3} in an impure sample of seashells.
- Perform stoichiometric calculations based on balanced equations that may include limiting reagents.

TABLE 3: THE PERIODIC TABLE OF ELEMENTSITABEL 3: DIE PERIODIEKE TABEL VAN ELEMENTE

The Mole
Atoms, molecules and ions are too small to count, and there are so many particles in even the smallest sample of a substance.
There are more particles of water in a teaspoon then there are teaspoons of water in all the oceans.
Rather than dealing with the particles individually, we deal with a special number of particles.
The mole is a name for a special number. Many numbers have names, such as:
2 = pair
3 = hat-trick
12 = dozen
144 = gross
A mole of particles is an amount of $6,02 \times 10^{23}$ particles. $6,02 \times 10^{23}$ is known as Avogadro's number, N_{A}.
Avogadro's number (N_{A}) is too big to imagine. 602000000000000000000000 .
This is many grains of sand, piled on the surface of the earth would almost reach the moon.
The mole is defined as the number of particles or atoms in $12,0 \mathrm{~g}$ of Carbon -12

Molar Mass

Particles are too small to weigh individually.
Molar mass (M) is defined as the mass of one mole of particles (atoms, molecules or formula units) and is measured in the unit g. mol^{-1}.

Relative atomic mass (Ar) is the average mass of an atom compared to the mass of a Carbon 12 atom. It is
measured in atomic mass units (amu).
Molar mass (M) of an element is equal to the magnitude of relative atomic mass (Ar) in $a m u$. This is found on the periodic table. See the table below for other substances:

Type of substance	Particles	Example	Formula	Molar mass g-mol
Element	Atoms	Neon	Ne	20
Covalent compound	Usually Molecules	Carbon dioxide	COz	$12+32$ $=44$
Ionic compound	Ions (formula units)	Salt	NaCl	$23+35,5$ $=58,5$
Metallic Compound	Positive kernels and delocalized electrons	Gold	Au	197

\therefore magnetite contains more iron
Different types of Chemical Formulae
Consider the substance ethane

It also can be represented using a formula. There are three types of formulas we use:

Molecular formula	Actual number of each atom.	Eg. $\mathrm{C}_{2} \mathrm{H}_{6}$
Empirical formula	Simplest whole number ratio of the atoms.	Eg. $\mathrm{C}_{1} \mathrm{H}_{3} \rightarrow \mathrm{CH}_{3}$
Structural formula	Shows how the atoms are joined.	

EXAMPLE .1.

What is the relative formula mass of Calcium sulphate $\left(\mathrm{CaSO}_{4}\right)$?

$$
\begin{aligned}
\mathrm{M}_{\mathrm{R}}\left(\mathrm{CaSO}_{4}\right) & =\mathrm{A}_{\mathrm{R}}(\mathrm{Ca})+\mathrm{A}_{\mathrm{R}}(\mathrm{~S})+\left(4 \times \mathrm{A}_{\mathrm{R}}(\mathrm{O})\right) \\
& =40+32+(4 \times 16) \\
& =136 \text { (no unit) }
\end{aligned}
$$

EXAMPLE. 2.
What is the molar mass of Calcium sulphate $\left(\mathrm{CaSO}_{4}\right)$? $=136 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$
EXAMPLE. 3.
What is the relative molecular mass of sucrose $\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right)$?

$$
\begin{aligned}
\mathrm{M}_{\mathrm{R}}\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right)= & 12 \times \mathrm{A}_{\mathrm{R}}(\mathrm{C})+22 \times \mathrm{A}_{\mathrm{R}}(\mathrm{H})+11 \times \mathrm{A}_{\mathrm{R}}(\mathrm{O}) \\
& =(12 \times 12)+(22 \times 1)+\quad(11 \times 16) \\
& =342 \text { (no unit })
\end{aligned}
$$

EXAMPLE. 4.
What is the molar mass of sucrose $\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right)$? $=342 \mathrm{~g} . \mathrm{mol}$

Concentrations of solutions

Solutions are homogeneous (uniform) mixtures of two or more substances. A solution is formed when a solute dissolves in a solvent.
The solvent and solute can be a gas, liquid, or solid. The most common solvent is liquid water. This is called an aqueous solution.

Solution	Solute	Solvent
Salt water	salt	water
Sugar water	sugar	water
Soda water	soda	water

Concentration

Concentration is the amount of solute per litre of solution.
The concentration of a solution is the number of mole of solute per unit volume of solution.

Molar Volumes of Gases

If different gases have the same volume under the same conditions of temperature and pressure, they will have the same number of molecules.

The molar volume of a gas, V_{M}, is the volume occupied by one mole of the gas.
V_{M} for all gases at STP is $22.4 \mathrm{dm}^{3} \cdot \mathrm{~mol}^{-1}$.
Standard Temperature and Pressure (STP) is $273 \mathrm{~K}\left(0^{\circ} \mathrm{C}\right)$ and $1,01 \times 10^{5} \mathrm{~Pa}$.
This also means that for reactions at constant temperature and pressure, gas volumes will react in the same ratio as the molar ratio.
molar ratio.

EXAMPLE:

A gas jar with a volume of $224 \mathrm{~cm}^{3}$ is full of chlorine gas, at STP. How many moles of chlorine gas are there in the gas jar?
$\mathrm{n}=\mathrm{V} \frac{V}{V_{M}}=\frac{\mathbf{0 . 2 2 4}}{22.4} \quad=0,01 \mathrm{~mol}$

Water of crystallization

Some ionic crystals trap a certain number of water molecules between the ions as they are forming. These water molecules are known as "Water of crystallization".

Eg. Hydrated copper sulphate:
$\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ has 5 water molecules per formula unit. When the hydrated salt crystals are heated, the water molecules evaporate off, leaving the anhydrous salt behind.
$\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(\mathrm{s}) \rightarrow \mathrm{CuSO}_{4}(\mathrm{~s})+\mathbf{5} \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
To calculate the number of moles of water of crystallization:

Calculate the mass of water that evaporated off. Calculate the moles of water.
Calculate the moles of anhydrous salt.
Determine the ratio of water to anhydrous salt.
Write the formula for the hydrated salt.

Note:

The dot in the formula (\cdot) between the salt and the water means that a light bond is formed. It is NOT a multiplication dot.

EXAMPLE:

$13,2 \mathrm{~g}$ of a sample of zinc sulphate, $\mathrm{ZnSO}_{4} . \mathrm{xH}_{2} \mathrm{O}$, was heated in a crucible. Calculate the number of moles of water of crystallisation if 7.4 g of solid remained.

1. $\mathrm{m}\left(\mathrm{H}_{2} \mathrm{O}\right)=13,2 \mathrm{~g}-7,4 \mathrm{~g}$

$$
=5,8 \mathrm{~g}
$$

2. $\mathrm{n}\left(\mathrm{H}_{2} \mathrm{O}\right)=\quad \frac{\mathrm{m}}{\mathrm{M}}$
$=\frac{5,8}{18}$
$=0,32 \mathrm{~mol}$
3. $\mathrm{n}\left(\mathrm{ZnSO}_{4}\right)=\quad \frac{\mathrm{m}}{\mathrm{M}}$
$=\frac{7,4}{161}$
$=0,046 \mathrm{~mol}$
4 . ratio $=\frac{\text { mol water }}{\text { mol anhydrous salt }}$

$$
\begin{array}{ll}
= & \frac{0,32}{0,046} \\
= & 1: 7
\end{array}
$$

$5 . \therefore$ formula $=\mathrm{ZnSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$

Calculating the Empirical Formula from Percentage Composition

The empirical formula of a compound can also be found from its percentage composition. We assume that 100 g of the compound is analysed, then each percentage gives the mass of the element in grams in 100 g of the compound.

An oxide of sulphur contains 40% sulphur and 60% oxygen by mass. Determine the empirical formula of this oxide of sulphur.

Steps	Sulphur	Oxygen
Step 1: \% of element	40	60
Step 2: Mass of element (g)	40	60
Step 3: Mol	$\mathrm{n}=\mathrm{m} / \mathrm{M}$ $=40 / 32$ $=1,25 \mathrm{~mol}$	$\mathrm{n}=\mathrm{m} / \mathrm{M}$ $=60 / 16$ $=3,75 \mathrm{~mol}$
Step 4: Smallest mol ratio	$1,25 / 1,25$ $=1$	$3,75 / 1,25$ $=3$

Empirical formula: $\mathbf{S O}_{\mathbf{3}}$

Calculating the Empirical Formula of a Compound from Mass

Empirical formula is the chemical formula of a compound that shows the smallest whole number ratio of the atoms.

To calculate the empirical formula of a compound from mass:

1. Determine the mass of the elements.
2. Determine mol of each substance. 3-Simplify the atomic ratio.

EXAMPLE:
In a combustion reaction $0,48 \mathrm{~g}$ of magnesium ribbon is burnt. The amount of magnesiurn oxide produced is $0,80 \mathrm{~g}$.
Calculate the empirical formula for magnesium oxide.

Steps	Magnesium	Oxygen
$\begin{array}{l}\text { Step 1: } \\ \text { Mass of element }\end{array}$	0.48 g	$0.80-0.48=0.32 \mathrm{~g}$

=0.32 / 16

=0,02 \mathrm{~mol}\end{array}\right]\)\begin{tabular}{l}
Step 2:

\hline | Sol (divide by mass of $1 \mathrm{~m} / \mathrm{mol})$ |
| :--- |
| $=0.48 / 24$ |

\hline | Step 3: |
| :--- |
| Atom ratio |
| (divide by smallest no in ratio) |

\hline
\end{tabular}

Empirical formula: MgO

EXAMPLE:

A sample of an oxide of copper contains 8 g of copper combined with 1 g of oxygen.
Find the empirical formula of the compound.

Steps	Copper	Oxygen
Step 1: Mass of element	8 g	1 g
Step 2: Mol (divide by mass of 1 mol)	$\mathrm{n}=\mathrm{m} / \mathrm{M}$ $=8 / 63,5$ $=0,126 \mathrm{~mol}$	$\mathrm{n}=\mathrm{m} / \mathrm{M}$ $=1 / 26$ $=0,0625 \mathrm{~mol}$
Step 3: Atom ratio (divide by smallest no in ratio)	$0,126 / 0,0625$ ≈ 2	$0,0625 / 0,0625$ $=1$

Empirical formula: $\mathrm{Cu}_{2} \mathrm{O}$

Empirical formula to Molecular Formula

The empirical formula is the simplest whole number ratio of atoms in a molecule. The molecular formula is the actual ratioof the atoms in a molecule.

The molecular formula can be calculated from the empirical formula and the relative molecular mass.

STEPS TO DETERMINE MOLECULAR FORMULA:

1. Determine the empirical formula (if not given).
2. Determine the molar mass of the empirical formula.
3. Determine the ratio between molecular formula and empirical formula.
4. Multiply the ratio into the empirical formula

EXAMPLE:
Butene has the empirical formula CH_{2}. The molecular mass of butene is $56 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$. Determine the molecular formula of butene.

1. Empirical formula given: CH_{2}
2. $\mathrm{M}\left(\mathrm{CH}_{2}\right)=12+1+1$
$=14 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$
3. ratio number $=\frac{\text { molecular formula mass }}{\text { empirical formula mass }}$

$$
\begin{aligned}
& =\frac{56}{14} \\
& =4
\end{aligned}
$$

4. $\mathrm{CH}_{2} \times 4=\mathrm{C}_{4} \mathrm{H}_{8}$

Balanced chemical equations

$\mathrm{Eg} . \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
The balanced chemical equation is the "recipe". It tells us:

- The reactants used i.e. Nitrogen and Hydrogen
- The products produced. i.e. ammonia
- The states of the reactants and products (all gases here)
- The molar ratio of the reactants to products.

1 molecule of nitrogen reacts with 3 molecules of hydrogen to form 2 molecules of ammonia.
1 mole of nitrogen reacts with 3 moles of hydrogen to form 2 moles of ammonia.

Approach to reaction stoichiometry

1. Write a balanced chemical equation.
2. Change the 'given' amount into mole (use limiting reactant if applicable).
3. Determine the number of mole of the 'asked' substance using the mole ratio.
4. Determine the 'asked' amount from the number of mole

EXAMPLE:
To obtain iron, iron (III) oxide reacts with carbon monoxide according to the following word equation:
iron (III) oxide + carbon monoxide \rightarrow iron + carbon dioxide
What mass of iron is produced from 48 g of iron (III) oxide?

1. $\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+3 \mathrm{CO}(\mathrm{g}) \rightarrow 2 \mathrm{Fe}(\mathrm{s})+3 \mathrm{CO}_{2}(\mathrm{~g})$

Limiting Reactants

In a reaction between two substances, one reactant is likely to be used up completely before the other. This limits the amount of product formed.
Consider the reaction between magnesium and dilute sulphuric acid. The balanced chemical equation is $\mathrm{Mg}(\mathrm{s})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{MgSO}_{4}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$
This means that 1 mole of magnesium reacts with 1 mole of sulphuric acid. Both reactants will be completely used up by the time the reaction stops.
What happens if 1 mole of magnesium reacts with 2 mole of sulphuric acid? There is now insufficient magnesium to react with all of the sulphuric acid.
1 mole of sulphuric acid is left after the reaction.
All of the magnesium is used up, We say the magnesium is the limiting reactant. Some sulphuric acid is left after the reaction. We say the sulphuric acid is in excess.
The amount of limiting reactant will determine:

- The amount of product formed.
- The amount of other (excess) reactants used.

Determining limiting reactants

1. Calculate the number of moles of each reactant.
2. Determine the ratio between reactants.
3. Determine limiting reactant using the ratios.

NOTE:

If one reactant is in excess, it means that there is more than enough of it. If there are only 2 reactants and one is in excess, it means that the other is the limiting reactant
EXAMPLE:
A $8,4 \mathrm{~g}$ sample of nitrogen reacts with $1,5 \mathrm{~g}$ hydrogen. The balanced equation is:
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$

Determine (a) which reactant is the limiting reactant, and (b) the mass of ammonia that can be produced.

Example 2

If all nitrogen is used, 0,9 mol hydrogen is needed, However, only $0,75 \mathrm{~mol}$ hydrogen is available. The hydrogen will run out first, therefore hydrogen is the limiting reactant.
(b)

Because the hydrogen is the limiting reactant, it will determine the mass of ammonia produced:

```
\vdots}\mp@subsup{\textrm{H}}{2}{}\quad=\quad\mp@subsup{\textrm{NH}}{3}{
0,75 moll}=0.
m(NHH3)}=~\textrm{nM
    =(0,5)(17)
    = 8,5g
```


Percentage Purity

Sometimes chemicals are not pure and one needs to calculate the percentage purity. Only the pure component of the substance will react. For an impure sample of a substance:
Percentage purity $=\frac{\text { Mass of pure substance }}{\text { Mass of impure substance }} \times 100$
STEPS TO DETERMINE THE PERCENTAGE PURITY

1. Determine moles of products.
2. From the balanced formula, determine the ratio between reactants and products.
3. Using the ratio, determine the number of moles of reactants.
4. Determine the mass of pure reactant.
5. Calculate the percentage purity of the sample

EXAMPLE:

An impure sample of calcium carbonate, CaCO_{3}, contains calcium sulphate, CaSO_{4}, as an impurity. When excess hydrochloric acid was added to 6 g of the sample, $1200 \mathrm{~cm}^{3}$ of gas was produced (measured at STP). Calculate the percentage purity of the calcium carbonate sample. The equation for the reaction is: $\quad \mathrm{CaCO}_{3}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{CaCl}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{CO}_{2}(\mathrm{~g})$

1. $\mathrm{n}\left(\mathrm{CO}_{2}\right)=\frac{V}{V_{M}}=\frac{1,2}{22,4}=0,054 \mathrm{~mol}$
2.

1 : 1

$\therefore 0,054 \mathrm{mal}^{\mathrm{CaCO}} \mathrm{Ca}_{3}$ reacted
4.
$\mathrm{m}\left(\mathrm{CaCO}_{3}\right)=\pi M=(0,054)(40+12+16+16+16)=5,4 \mathrm{~g}$
5.

Percentage purity $=\frac{\text { Mass of pure substance }}{\text { Mass of inpure substamee }} \times 100$
Percentage purity $=$
Percentage purity $=$

$$
\begin{aligned}
& \frac{5,4}{6,0} \times 100 \\
& 90 \%
\end{aligned}
$$

Percentage Yield

When you make a chemical in a laboratory a little of the chemical is always lost, due to evaporation into the surrounding air, or due to a little being left in solution.
Some of the reactants may not react. We say that the reaction has not run to completion.
This results in the amount of the chemical produced always being less than the maximum theoretical amount you would expect. We can express this by the percentage yield:
Percentage yield $=\frac{\text { Mass of product produced }}{\text { Maximum theoretical mass of product }} \times 100$
Percentage yield is usually determined using mass, but can also be determined with mol and volume. STEPS TO DETERMINE THE PERCENTAGE YIELD

1. Determine moles of reactants.
2. From the balanced formula, determine the ratio between reactants and products.
3. Using the ratio, determine the number of moles of products.
4. Determine the theoretical mass of product.
5. Calculate the percentage yield.

EXAMPLE:
128 g of sulphur dioxide, SO_{2}, was reacted with oxygen to produce sulphur trioxide, SO_{3}. The equation for the reaction is: $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$
140 g of SO_{3} was produced in the reaction. Calculate the percentage yield of the reaction

1. $\mathrm{n}\left(\mathrm{SO}_{2}\right)=\frac{m}{M}=\frac{128}{64}=2 \mathrm{~mol}$
$\begin{array}{cccc}2 O_{2}=\mathrm{SO}_{3} & 3 \mathrm{SO}_{2}=\mathrm{SO}_{3} \\ 2 & 2 & 12=1 \\ 1 & 1 & 2 & =2 \\ & & \therefore 2 \text { mol } \mathrm{SO}_{3}\end{array}$
2. $m\left(\mathrm{SO}_{3}\right)=m M=(2)(32+16+16+16)=160 \mathrm{~g}$
3.

Percentage yield $=\frac{\text { Mass of product produced }}{\text { Mansimann insoneticall mass of prostuct }} \times 100$
Percentage yield $=\quad \frac{140}{160} \times 100$
Pencentage yield $=\quad 87.5 \%$

