Grade 11

Function

Changes and Effect on functions

REFELCTION ABOUT y-AXIS FOR ALL FUNCTIONS

- x-values change signs
- <u>EXAMPLE 1</u> f(x) = x+3 REFLECTION ABOUT y-AXIS FUNCTION (CALL THE FUNCTION g(x)) NOW BECOMES g(x) = (-x)+3 g(x) =-x+3

TRY EXAMPLE 2

Write down the new function (call it g(x)) if the given function reflected about y-axis

- a. $f(x) = x^2 + 4$
- b. f(x) = 3x+4
- c. $f(x) = \frac{2}{x+4} + 2$

d.
$$f(x) = 4^{x+3} + 2$$

Answers to Example 2

- a. $f(x) = x^{2} + 4$ $\frac{\text{REFLECTION ABOUT Y-AXIS}}{g(x) = (-x)^{2} + 4}$ $g(x) = x^{2} + 4$
- b. f(x) = 3x+4<u>REFLECTION ABOUT Y-AXIS</u> g(x) = 3.(-x) +4 g(x) = -3x +4

Answers to Example 2

- c. $f(x) = \frac{2}{x+4} + 2$ REFLECTION ABOUT Y-AXIS $g(x) = \frac{2}{(-x)+4} + 2$ $g(x) = \frac{2}{-x+4} + 2$
- d. $f(x) = 4^{x+3} + 2$ REFLECTION ABOUT Y-AXIS $g(x) = 4^{-(x)+3} + 2$ $g(x) = 4^{-x+3} + 2$

<u>SUMMARY</u>

CHANGE and EFFECT

Function	a>0	a<0	p increases	p decreases	q increases	q decreases
y = f(x) = a (x + p) + q	Gradient is positive. Graph slope upwards	Gradient is negative. Graph slope downwards	Graph moves to left p units	Graph moves to right p units	Graph moves upwards q units	Graph moves downwards q units
$y = f(x) = a (x + p)^2 + q$	Graph has a minimum. Graph will be a "HAPPY" face	Graph has a maximum. Graph will be a "SAD" face	Graph moves to left p units	Graph moves to right p units	Graph moves upwards q units	Graph moves downwards q units
$y = f(x) = \frac{a}{x+p} + q$	Graph is in 1 st and 3 rd Quadrant	Graph is in 2 nd and 4 th Quadrant	Graph moves to left p units	Graph moves to right p units	Graph moves upwards q units	Graph moves downwards q units
$y = f(x) = ab^{x+p} + q$			Graph moves to left p units	Graph moves to right p units	Graph moves upwards q units	Graph moves downwards q units