Grade 10

Mathematics

Equations

14 July 2020

LITERAL EQUATIONS

Literal Equations involve working with letters (sometimes more than just x and y) and numbers. The way you solve the equation is the same way as normal.

DO THE FOLLOWING EXAMPLES WITHOUT LOOKING AT ANSWERS FIRST AND THEN CHECK YOUR **ANSWERS AGAINST THE ANSWERS GIVEN**

Example 1

Solve for x in the following formula: 2x + 4y = 2.

Answer

$$2x = 2 - 4y$$

$$\frac{1}{2}(2x) = \frac{1}{2}(2 - 4y)$$
Multiply each side by ½ to get x alone
$$x = 1 - 2y$$

Example 2 Make a *the subject* of the formula:

$$s = ut + \frac{1}{2}at^2$$

Answer

Example 3

Solution:

Example 7	Example 8
7. Solve for h : $A = 2\pi r h + 2\pi r$. Solution:	8. Make λ the subject of the formula: $t = \frac{D}{f\lambda}$.
$A = 2\pi r h + 2\pi r$ $A - 2\pi r = 2\pi r h$ $\frac{A - 2\pi r}{2\pi r} = h$ Note restriction: $r \neq 0$	Solution: $t = \frac{D}{f\lambda}$ $t(\lambda) = \frac{D}{f}$ $\lambda = \frac{D}{tf}$ Note restrictions: $t \neq 0, f \neq 0$

Example 9

- 9. Solve for m: $E = mgh + \frac{1}{2}mv^2$. Solution:

$$E = mgh + \frac{1}{2}mv^{2}$$
$$E = m\left(gh + \frac{1}{2}v^{2}\right)$$
$$\frac{E}{gh + \frac{1}{2}v^{2}} = m$$

Note restriction: $gh + \frac{1}{2}v^2 \neq 0$