Grade 10

Mathematics

Equations

14 July 2020

LITERAL EQUATIONS

Literal Equations involve working with letters (sometimes more than just x and y) and numbers.
The way you solve the equation is the same way as normal.

DO THE FOLLOWING EXAMPLES WITHOUT LOOKING AT ANSWERS FIRST AND THEN CHECK YOUR ANSWERS AGAINST THE ANSWERS GIVEN

Example 1

Solve for x in the following formula: $2 x+4 y=2$.

Answer

$$
\begin{array}{rlr}
2 x & =2-4 y \\
\frac{1}{2}(2 x) & =\frac{1}{2}(2-4 y) \\
x & =1-2 y
\end{array}
$$

Example 2

Make a the subject of the formula:

$$
s=u t+\frac{1}{2} a t^{2}
$$

Answer

Example 3

3. Solve for n : $p V=n R T$. Solution:

Example 4

4. Make x the subject of the formula: $\frac{1}{b}+\frac{2 b}{x}=2$. Solution:

$$
\begin{aligned}
\frac{1}{b}+\frac{2 b}{x} & =2 \\
\frac{x+b(2 b)}{b x} & =2 \\
x+2 b^{2} & =2 b x \\
x-2 b x & =-2 b^{2} \\
x(1-2 b) & =-2 b^{2} \\
x & =\frac{-2 b^{2}}{1-2 b}
\end{aligned}
$$

Example 5

5. Solve for r : $V=\pi r^{2} h$.

Solution:

$$
\begin{aligned}
V & =\pi r^{2} h \\
\frac{V}{\pi h} & =r^{2} \\
\pm \sqrt{\frac{V}{\pi h}} & =r
\end{aligned}
$$

Note restriction: $h \neq 0$

Example 6

6. Solve for h : $E=\frac{h c}{\lambda}$.

Solution:

Note restriction: $c \neq 0$

Lambda, $11^{\text {th }}$ letter of the Greek alphabet, (λ) ,indicates the wavelength of any wave, especially in physics, electronics engineering, and mathematics. It is just part of the formula and must be treated as any other letter. We do not have to work out the wavelength.

Example 7

7. Solve for $h: A=2 \pi r h+2 \pi r$.

Solution:

$$
\begin{aligned}
A & =2 \pi r h+2 \pi r \\
A-2 \pi r & =2 \pi r h \\
\frac{A-2 \pi r}{2 \pi r} & =h
\end{aligned}
$$

Note restriction: $r \neq 0$

Example 8

8. Make λ the subject of the formula: $t=\frac{D}{f \lambda}$.

Solution:

$$
\begin{aligned}
t & =\frac{D}{f \lambda} \\
t(\lambda) & =\frac{D}{f} \\
\lambda & =\frac{D}{t f}
\end{aligned}
$$

Note restrictions: $t \neq 0, f \neq 0$

Example 9

9. Solve for $m: E=m g h+\frac{1}{2} m v^{2}$.

Solution:

$$
\begin{aligned}
E & =m g h+\frac{1}{2} m v^{2} \\
E & =m\left(g h+\frac{1}{2} v^{2}\right) \\
\frac{E}{g h+\frac{1}{2} v^{2}} & =m
\end{aligned}
$$

Note restriction: $g h+\frac{1}{2} v^{2} \neq 0$

