COS RULE AND PROOF YOU NEED TO LEARN THE PROOF

COS RULE

WE USE THIS RULE TO FIND THE LENGTHS OF SIDES, SIZES OF ANGLES OF ANY KIND OF TRIANGLE. TO 'SOLVE A
TRIANGLE' MEANS YOU MUST CALCULATE THE UNKNOWN
SIDES AND ANGLES.

YOU APPLY THE COS RULE IF YOU ARE GIVEN THE VALUES OF:

- TWO SIDES AND THE INCLUDED ANGLE OR
 - THREE SIDES OF A TRIANGLE

$$IN \Delta ABC$$
:
 $a^2 = b^2 + c^2 - 2.b.c.CosA$
 $\frac{OR}{b^2}$
 $b^2 = a^2 + c^2 - 2.a.c.CosB$
 $\frac{OR}{c^2}$
 $c^2 = a^2 + b^2 - 2.a.b.CosC$

COS RULE PROOF

THE PROOF IS NEEDED TO BE LEARNT FOR EXAM PURPOSES.

If A is acute

In
$$\triangle$$
 BDC: $a^2 = BD^2 + CD^2$ (Pythagoras Theorem)
= $BD^2 + (b - AD)^2$
= $BD^2 + b^2 - 2bAD + AD^2$

But
$$BD^2 + AD^2 = c^2$$
 (Pythagoras Theorem)

Thus
$$a^2 = b^2 + c^2 - 2bAD$$
(1)

In
$$\triangle$$
 ABD: $\cos A = \frac{AD}{c}$... AD = $c \cos A$ (2)

Substituting (2) into (1)

$$a^2 = b^2 + c^2 - 2bc \cos A$$

Similarly it can be shown that:

$$b^2 = a^2 + c^2 - 2ac \cos B$$
 and $c^2 = a^2 + b^2 - 2ab \cos C$

SOME EXPLAINATIONS

1. REMEMBER

$$BC = a$$

$$AC = b$$

$$AB = C$$

$$2. \quad AC = AD + CD$$

$$\therefore$$
 CD =AC - AD

: because AC = b (in DIAGRAM), CD = b - AD

3. USING PYTHAGORUS IN
$$\triangle$$
 BDC, $BC^2 = BD^2 + CD^2$

$$BC = a$$

$$a^2 = BD^2 + CD^2$$

$$a^2 = BD^2 + (b - AD)^2$$
 FROM point 2 above $(b - AD)^2 = b^2 - 2b \cdot AD + AD^2$ Using DISTRIBUTIVE LAW

$$\therefore a^2 = BD^2 + (b^2 - 2b.AD + AD^2)$$

$$a^2 = BD^2 + b^2 - 2b.AD + AD^2$$

4.
$$AB^2 = AD^2 + BD^2 \text{ in } \Delta ABD$$

$$AB = C$$

$$\therefore c^2 = BD^2 + AD^2$$

$$a^2 = \mathbf{B}\mathbf{D^2} + b^2 - 2b.AD + \mathbf{A}\mathbf{D^2}$$

$$a^2 = b^2 + c^2 - 2b.AD$$

5. In
$$\triangle ABD$$
: $cosA = \frac{AD}{AB} = \frac{AD}{c}$

$$AD = c \cdot \cos A$$

$$a^2 = b^2 + c^2 - 2b \cdot c \cdot \cos A$$

COS RULE PROOF

THE PROOF IS NEEDED TO BE LEARNT FOR EXAM PURPOSES.

If is obtuse

In
$$\triangle$$
 BDC: $a^2 = BD^2 + CD^2$ (Pythagoras Theorem)
= $BD^2 + (b + AD)^2$
= $BD^2 + b^2 + 2bAD + AD^2$

But BD² + AD² =
$$c^2$$
 (Pythagoras Theorem)

Thus
$$a^2 = b^2 + c^2 + 2bAD$$
(1)

In∆ABD:.

$$cos(180^{\circ} - A) = \frac{AD}{C} : AD = -c cosA....(2)$$

Substituting (2) into (1)

$$a^2 = b^2 + c^2 - 2bc \cos A$$

Similarly it can be shown that:

$$b^2 = a^2 + c^2 - 2ac \cos B$$
 and $c^2 = a^2 + b^2 - 2ab \cos C$

SOME EXPLAINATIONS

I. REMEMBER

$$BC = a$$

$$AC = b$$

$$AB = C$$

: because AC = b (in DIAGRAM), CD = b + AD

3. USING PYTHAGORUS IN
$$\triangle$$
 BDC, $BC^2 = BD^2 + CD^2$

$$BC = a$$
$$a^2 = BD^2 + CD^2$$

$$a^2 = BD^2 + (b + AD)^2$$
 FROM point 2 above
 $(b + AD)^2 = b^2 + 2b \cdot AD + AD^2$ Using DISTRIBUTIVE LAW

4.
$$AB^{2} = AD^{2} + BD^{2} \text{ in } \Delta ABD$$

$$AB = C$$

$$\therefore c^{2} = BD^{2} + AD^{2}$$

$$a^{2} = BD^{2} + b^{2} - 2b.AD + AD^{2}$$

 $a^{2} = b^{2} + c^{2} + 2b.AD$

5. In
$$\triangle ABD$$
: $\cos(180^{\circ} - A) = \frac{AD}{AB} = \frac{AD}{c}$

$$\therefore AD = -c. \cos A$$

$$a^2 = b^2 + c^2 - 2b. c. \cos A$$