GRADE 12
Calculus -Equations of Tangents to Graphs of Functions 17 July 2020

WEBSITE NOTES ANSWERS

TOPIC:

- Equations of tangents to graphs of functions.

Remember that a Tangent is a straight line and therefore has the equation $\mathrm{y}=\mathrm{mx}+\mathrm{c}$. To work out the gradient you will need to work out the derivative first.

Example 2

Try the following on your own

Given $f(x)=x^{3}+2 x^{2}+2 x-4$
Determine the equation of the tangent at the point $S(1 ; 1)$ in the form of $\mathrm{y}=$ \qquad
Answer

$$
\begin{gathered}
f^{\prime}(x)=3 x^{2}+4 x+2 \\
f^{\prime}(1)=3 \cdot(1)^{2}+4 \cdot(1)+2=9 \\
y-y_{1}=m\left(x-x_{1}\right) \\
y-(1)=9 \cdot(x-(1)) \\
y-1=9 x-9 \\
y=9 x-9+1 \\
y=9 x-8
\end{gathered}
$$

Example 3

Try the following on your own

Given $f(x)=2 x^{3}-x^{2}+3 x-5$
Determine the equation of the tangent at the point $S(-1 ;-11)$ in the form of $y=\ldots \ldots$

Answer

$$
\begin{gathered}
f^{\prime}(x)=6 x^{2}-2 x+3 \\
f^{\prime}(-1)=6 \cdot(-1)^{2}-2 \cdot(-1)+3=11 \\
y-y_{1}=m\left(x-x_{1}\right) \\
y-(-11)=11 \cdot(x-(-1)) \\
y+11=11 \cdot(x+1) \\
y+11=11 x+11 \\
y=11 x+11-11 \\
y=\mathbf{1 1 x}
\end{gathered}
$$

Example 4

Try the following on your own

Given $f(x)=x^{2}+2 x-2$
Determine the equation of the tangent at the point $S(2 ; 6)$ in the form of $y=\ldots \ldots$.

Answer

$$
\begin{gathered}
f^{\prime}(x)=2 x+2 \\
f^{\prime}(2)=2 \cdot(2)+2=6 \\
y-(6)=6 \cdot(x-(2)) \\
y-6=6 x-12 \\
y=\mathbf{6 x - 6}
\end{gathered}
$$

