GRADE 12
Calculus -Equations of Tangents to Graphs of Functions 17 July 2020

WEBSITE NOTES

TOPIC:

- Equations of tangents to graphs of functions.

Remember that a Tangent is a straight line and therefore has the equation $\mathrm{y}=\mathrm{mx}+\mathrm{c}$. To work out the gradient you will need to work out the derivative first.

Example 1

$$
\text { Given } f(x)=-x^{3}+3 x^{2}-10 x+3
$$

Determine the equation of the tangent at the point $S(2 ;-13)$ in the form of $y=\ldots \ldots$.

Answer

STEP 1
Work out the Derivative (Gradient) of $f(x)$

$$
\begin{gathered}
f(x)=-x^{3}+3 x^{2}-10 x+3 \\
f^{\prime}(x)=-3 x^{2}+6 x-10
\end{gathered}
$$

STEP 2

Determine the Derivative (Gradient) at the point S (2;-13). In other words, substitute $\mathrm{x}=2$ into the Derivative (Gradient) worked in step 1. Do not substitute the $y=-13$ in. $y=-13$ is the y-coordinate of $f(x)=-x^{3}+3 x^{2}-10 x+3$ when $x=2$.

$$
\begin{gathered}
f^{\prime}(x)=-3 x^{2}+6 x-10 \\
f^{\prime}(2)=-3 .(2)^{2}+6 \cdot(2)-10 \\
f^{\prime}(2)=-10
\end{gathered}
$$

Therefore, the Derivative (Gradient) at $x=2$ is -10 . This is the \boldsymbol{m} value in $\boldsymbol{y}=\boldsymbol{m} \boldsymbol{x}+\boldsymbol{c}$

STEP 3

Use the equation $y-y_{1}=m\left(x-x_{1}\right)$ where $x_{1}=2$ and $y_{1}=-13$ (the point S given) and $m=-10$

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}\right) \\
y-(-13)=-10 \cdot(x-(2)) \\
y+13=-10 x+20 \\
y=-10 x+20-13 \\
y=-10 x+7
\end{gathered}
$$

Example 2

Try the following on your own
Given $f(x)=x^{3}+2 x^{2}+2 x-4$
Determine the equation of the tangent at the point $S(1 ;-1)$ in the form of $y=\ldots .$.

Example 3

Try the following on your own

$$
\text { Given } f(x)=2 x^{3}-x^{2}+3 x-5
$$

Determine the equation of the tangent at the point $S(-1 ;-11)$ in the form of $y=\ldots$.

Example 4

Try the following on your own

$$
\text { Given } f(x)=x^{2}+2 x-2
$$

Determine the equation of the tangent at the point $S(2 ; 6)$ in the form of $\mathrm{y}=\ldots \ldots$.

