GRADE 12
Analytical Geometry -Equations of Tangents to Circles 17 July 2020
WEBSITE NOTES ANSWERS
TOPIC:

- Equations of tangents to a circle.

Remember that a Tangent is a straight line and therefore has the equation $y=m x+c$. You need to determine m first, then substitute the point given in to obtain c.

REMEMBER:
Radius is \perp to Tangent
mradius \times mtangent $=-1$
m being the gradient

Example 1

Find the equation of the tangent to the circle $x^{2}+y^{2}=5$ at the point $(-2 ; 1)$.

Answer

$$
x^{2}+y^{2}=5
$$

STEP 1
Determine the Gradient (m)
Centre of circle given is $(0 ; 0)$
Therefore mradius $=m=\frac{y_{1}-y_{2}}{x_{1}-x_{2}}=\frac{1-0}{-2-0}=-\frac{1}{2}$

STEP 2

Determine the Gradient of Tangent mradius \times mtangent $=-1$

$$
\begin{gathered}
-\frac{\mathbf{1}}{\mathbf{2}} \times \text { mtangent }=-1 \\
\text { mtangent }=2
\end{gathered}
$$

STEP 3

Determine the Equation of Tangent

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}\right) \\
y-(1)=2(x-(-2)) \\
y-1=2(x+2) \\
y=2 x+4+1 \\
y=2 x+5
\end{gathered}
$$

Example 2

Find the equation of the tangent APB which touches a circle centre C with equation $(x-3)^{2}+(y+1)^{2}=20$ at $\mathrm{P}(5 ; 3)$.

Solution

Draw a sketch to help you.
Centre of circle is $\mathrm{C}(3 ;-1)$ so the gradient of the radius $\mathrm{CP}\left(m_{\mathrm{CP}}\right)$
is $\frac{3-(-1)}{5-3}=2$.
radius \perp tangent, so $m_{\mathrm{APB}} \times m_{\mathrm{CP}}=-1$ and so
$m_{\mathrm{APB}}=-\frac{1}{2}$
Equation of tangent: $\quad y-y_{1}=m\left(x-x_{1}\right)$

$$
\begin{aligned}
y-3 & =-\frac{1}{2}(x-5) \quad \mathrm{P} \text { is a point on the tangent } \\
y-3 & =-\frac{1}{2} x+2 \frac{1}{2} \\
y & =-\frac{1}{2} x+5 \frac{1}{2}
\end{aligned}
$$

Example 3

Try the following on your own

Given $f(x)=2 x^{3}-x^{2}+3 x-5$
Determine the equation of the tangent at the point $S(-1 ;-11)$ in the form of $y=\ldots \ldots$

Answer
GRAPH OF FUNCTION and TANGENT

$$
\begin{gathered}
f^{\prime}(x)=6 x^{2}-2 x+3 \\
f^{\prime}(-1)=6 \cdot(-1)^{2}-2 \cdot(-1)+3=11 \\
y-y_{1}=m\left(x-x_{1}\right) \\
y-(-11)=11 \cdot(x-(-1)) \\
y+11=11 \cdot(x+1) \\
y+11=11 x+11 \\
y=11 x+11-11 \\
y=\mathbf{1 1 x}
\end{gathered}
$$

Example 4
 Try the following on your own

$$
\text { Given } f(x)=x^{2}+2 x-2
$$

Determine the equation of the tangent at the point $S(2 ; 6)$ in the form of $y=\ldots \ldots$

Answer

$$
f^{\prime}(x)=2 x+2
$$

$$
f^{\prime}(2)=2 .(2)+2=6
$$

$$
y-(6)=6 \cdot(x-(2))
$$

$$
y-6=6 x-12
$$

$$
y=6 x-6
$$

