Analytical Geometry

Gr 11

Angle of Inclination

The angle of inclination is the angle that is made between the positive x-axis and a line
Angle θ shows the slope or inclination of the line $A B$.

$\tan \theta=\frac{B C}{A C}=\frac{C H A N G E ~ I N ~ Y}{C H A N G E ~ I N ~ X}=\frac{Y_{B}-Y_{A}}{X_{B}-X_{A}}=$ GRADIENT THEREFORE $\tan \theta=M_{A B}$
θ is called the angle of inclination.
NOTE: $\theta \in\left(0^{\circ} ; 180^{\circ}\right)$

Example 1

Determine the Gradient of the following given the angle of inclination is:
a. 60°
b. 135°
c. 45^{0}
d. 90°
e. 180°

Answers

a. $m=\tan \theta$

$$
\begin{aligned}
& m=\tan 60^{\circ} \\
& m=1.7
\end{aligned}
$$

b. $m=\tan \theta$
$m=\tan 135^{\circ}$
$m=-1$
c. $m=\tan \theta$
$m=\tan 45^{\circ}$
$m=1$

$$
\begin{aligned}
\text { d. } \quad m & =\tan \theta \\
& m=\tan 90^{\circ} \\
& m=\text { undefined }
\end{aligned}
$$

e. $\quad m=\tan \theta$
$m=\tan 180^{\circ}$
$m=0$

Example 2

Determine the angle of inclination (correct to 1 decimal place) for each of the following:
a) a line with $m=\frac{3}{4}$
b) $2 y-x=6$
c) the line passes through the points $(-4 ;-1)$ and $(2 ; 5)$
d) $y=4$
e) $x=3 y+\frac{1}{2}$

Answers

a)

$$
\begin{aligned}
\tan \theta & =m \\
& =\frac{3}{4} \\
\theta & =\tan ^{-1}(0,75) \\
\therefore \theta & =36,8^{\circ}
\end{aligned}
$$

b)

$$
\begin{aligned}
2 y-x & =6 \\
2 y & =x+6 \\
y & =\frac{1}{2} x+3 \\
\tan \theta & =m \\
& =\frac{1}{2} \\
\theta & =\tan ^{-1}(0,5) \\
\therefore \theta & =26,6^{\circ}
\end{aligned}
$$

c)

$$
\begin{aligned}
m & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{5+1}{2+4} \\
& =\frac{6}{6} \\
\therefore m & =1 \\
\tan \theta & =1 \\
\theta & =\tan ^{-1}(1) \\
\therefore \theta & =45^{\circ}
\end{aligned}
$$

d) Horizontal line
e)

$$
\begin{aligned}
x & =3 y+\frac{1}{2} \\
x-\frac{1}{2} & =3 y \\
\frac{1}{3} x-\frac{1}{6} & =y \\
\therefore m & =\frac{1}{3} \\
\theta & =\tan ^{-1}\left(\frac{1}{3}\right) \\
\therefore \theta & =18,4^{\circ}
\end{aligned}
$$

