16 July 2020

Grade 12 Sketching Cubic Functions ANSWERS

The Standard Form of a cubic function is $f(x)=a x^{3}+b x^{2}+c x+d$
To Draw a Cubic function the following is needed:

1. SHAPE
2. Y-Intercept
3. X-Intercepts
4. Stationery points (Turning Points)
5. Point of Infliction (Where the concavity changes)

Example 2

Try yourself

1. $f(x)=-x^{3}-x^{2}+x+10$
a) Write down the coordinates of the y-intercept of f
b) Show that $(2 ; 0)$ is the only x-intercept.
c) Calculate the coordinates of the turning points of f
d) Sketch the graph of f. Show all intercepts with axes and all turning points.
e) Determine the point of inflection.

Example 3

Try yourself
Sketched below is the graph of $g(x)=-2 x^{3}-3 x^{2}+12 x+20=$
$-(2 x-5)(x+2)^{2}$. A and T are turning points of g. A and B are the
x-intercepts of $g . \mathrm{P}(-3 ; 11)$ is a point on the graph.

a) Determine the length of AB .
b) Determine the x-coordinate of T .
c) Determine the equation of the tangent to g at $\mathrm{P}(-3 ; 11)$ in the form $y=\ldots$
d) Determine the value(s) of k for which $-2 x^{3}-3 x^{2}+12 x+20=k$ has three distinct roots.
e) Determine the x-coordinate of the point of inflection.
a) When $x=0, y=10$, therefore are $(0 ; 10) \checkmark$
b) Assuming that $(2 ; 0)$ is the x-intercept, then $x-2$ is a factor of $f(x)$ $f(x)=-x^{3}-x^{2}+x+10=(x-2)\left(-x^{2}-3 x-5\right) \sqrt{ } \sqrt{ }$
$\therefore x-2=0$ or $-x^{2}-3 x-=0 \checkmark$
$x=2$ but $-x^{2}-3 x-5=0$ has no real solution. Hence $(x-2)$ is the only x-intercept $\checkmark \checkmark$
c) At the turning point $f^{\prime}(x)=-3 x^{2}-2 x+1=0 \checkmark$
$(-3 x+1)(x+1)=0$
$x=\frac{1}{3}$ or $x=-1 \checkmark \checkmark$
When $x=\frac{1}{3}, y=-\frac{1}{27}-\frac{1}{9}+\frac{1}{3}+10=\frac{270-3+9-1}{27}=\frac{275}{27}=10 \frac{5}{27}$
Therefore turning point is $\left(\frac{1}{3} ; \frac{275}{27}\right)=\left(\frac{1}{3} ; 10 \frac{5}{27}\right) \Omega$
When $x=-1, y=1-1-1+10=9$
Therefore turning point is $-(1 ; 9) \checkmark$
d)

e) At the point of inflection $f^{\prime \prime}(x)=-6 x-2=0 \Omega$
\therefore at $x=-\frac{2}{6}=-\frac{1}{3} J$

Example 3 Answers

a) Since A and B are the x-intercepts of g they are solutions of $-(2 x-5)(x+2)^{2}=0$
i.e. $x=-2$ and $x=\frac{5}{2}$ The distance between -2 and
$\frac{5}{2}$ is $\frac{5}{2}-(-2)=4,5$ units $\sqrt{ }$
b) T is a turning point. $g^{\prime}(x)=-6 x^{2}-6 x+12=0$.
$-6\left(x^{2}+x-2\right)=0$
$-6(x+2)(x-1)=0$
When $x=-2$ or $x=1 . \sqrt{ }$
So the x-coordinate of T is 1 .
c) $g^{\prime}(3)=-6(-3)^{2}-6(-3)+12=-24 \sqrt{ }$

So the equation of the tangent line is $y-11=-24(x+3) \checkmark$ which simplifies to $y=-24 x-61 \checkmark$
d) The graph of $y=k$ is shown together with $g(x)$ below.

Using these graphs we can observe that, provided the line lies above the y-value of A and below that of T, the equation $-2 x^{3}-3 x^{2}+12 x+20=k$ will have 3 distinct roots.
At T, $g(1)=-2-3+12+20=27$. So for $0<k<27$ the equation has 3 distinct roots. $\checkmark \checkmark \checkmark \checkmark$

e) $g^{\prime \prime}(x)=-12 x-6$
$-12 x-6=0$ when $x=\frac{6}{-12}=-\frac{1}{2} \sqrt{ } \sqrt{ }$

