LINEAR FUNCTION GRADE 10

SKETCHING STRAIGHT LINE GRAPHS

LINEAR FUNCTION

FIRST LET US LOOK AT THE EQUATION OF A LINEAR FUNCTION (OR STRAIGHT LINE GRAPHS)

$$
y=a x+q \text { which is the same as } y=m x+c
$$

- m (or a) is the gradient (slope of graph)
${ }^{\circ} \mathrm{c}$ (or q) is the y -intercept (where the graph cuts the y -axis)

LINEAR FUNCTION

A METHOD (DUAL INTERCEPT) TO SKETCH A LINEAR FUNCTION (OR STRAIGHT LINE GRAPH)

PRIOR KNOWLEDGE NEEDED FIRST

YOU WILL NEED TO CALCULATE THE COORDINATES OF THE X AND Y INTERCEPTS.

ONCE YOU HAVE THE X AND Y INTERCEPTS YOU WILL PLOT THE POINTS ON A CARTESIAN PLANE.
y-intercept is where $x=0$ (where the graph cuts the y-axis)
x-intercept is where $y=0$ (where the graph cuts the x-axis)

LINEAR FUNCTION

EXAMPLE 1

SKETCH THE FOLLOWING FUNCTION
$y=2 x+4$

ANSWER

A method is as follows:

1. Make sure the function is in standard form ($\mathrm{y}=\ldots . .$.)
2. Find the y-intercept by substituting $x=0$ into the given function
$y=2 x+4$
$y=2 .(0)+4$
$y=4$
The coordinate to plot is (0;4)

LINEAR FUNCTION

EXAMPLE 1
SKETCH THE FOLLOWING FUNCTION

LINEAR FUNCTION

EXAAPLE 2

sketch the following functions on the same set of axes.

$$
\begin{aligned}
& x+2 y-5=0 \\
& 3 x-y-1=0
\end{aligned}
$$

$$
\text { For } x+2 y-5=0 \text { : }
$$

We first write the equation in standard form: $y=-\frac{1}{2} x+\frac{5}{2}$. From this we see that the y-intercept is $\frac{5}{2}$. The x-intercept is 5.
For $3 x-y-1=0$:
We first write the equation in standard form: $y=3 x-1$. From this we see that the y-intercept is -1 . The x-intercept is $\frac{1}{3}$.

Graph 1

$$
x+2 y-5=0
$$

Y-intercept
$\left(0 ; \frac{5}{2}\right)$
X-intercept
(5; 0)

Graph 2

$3 x-y-1=0$
Y-intercept
$(0 ;-1)$
X-intercept
$\left(\frac{1}{3} ; 0\right)$

EXAMPLE 2

Graph 1

$$
x+2 y-5=0
$$

Y-intercept

$$
\left(0 ; \frac{5}{2}\right)
$$

X-intercept
$(5 ; 0)$

Graph 2

$$
3 x-y-1=0
$$

Y-intercept
($0 ;-1$)
X-intercept
$\left(\frac{1}{3} ; 0\right)$

