Function Summary 14 July 2020

Go through the following summary of functions
Linear functions of the form $y=m x+c$.

Domain	X E R
Range	Y E R
\boldsymbol{m} changes (Gradient Changes)	The Slope changes.
\boldsymbol{c} changes (y-intercept Changes)	The graph cuts the y axis at q. The graph can shift up or down then in comparison with original graph. Example $f(x)=x-2$
$g(x)=x-5$	
The graph of $g(x)$ cuts the y-axis at -5.	
Therefore $g(x)$ has moved down 3 units from $f(x)$	
graph.	

Quadratic functions of the form $y=a x^{2}+q$.

Domain	X E R
Range	If \boldsymbol{a} is positive $\mathrm{Y} \geq \mathrm{q}$ If \boldsymbol{a} is negative $\mathrm{Y} \leq \mathrm{q}$
a change	If $\mathrm{a} \geq 0$
\boldsymbol{q} changes	

Hyperbolic functions of the form $y=\frac{a}{x}+q$.

Domain	XE R; $x \neq 0$
Range	YE R; $y \neq q$
a change	The value of y at $x=1$ will be a The value of y at $x=-1$ will be a ALSO REMEMBER If $a>0$

q changes

Exponential functions of the form $y=a b^{x}+q$.

SUMMARY FOR ALL GRAPH SHIFTS

Function change	Shift
$f(x)+c$	Shift the graph of $f(x)$ up c units
$f(x)-c$	Shift the graph of $f(x)$ down c units
$f(x+c)$	Shift the graph of $f(x)$ left c units
$f(x-c)$	Shift the graph of $f(x)$ right c units
$-f(x)$	Reflect the graph of $f(x)$ about the $x-a x i s$
$f(-x)$	Reflect the graph of $f(x)$ about the y-axis
$f(c . x)$	Compress the graph of $f(x)$ horizontally by a factor of c.
$c . f(x)$	Stretch the graph of $f(x)$ vertically by a factor of c.

Textbook Exercises

Page 84 Exercise 1 number 1 (I put them on separate axes each time so you can see the graphs)

1.2

$1.3 g(x)=-1 / 2 x^{2}+2$

$1.5 h(x)=1 / 2 x^{2}$
1.6

$1.7 \mathrm{k}(\mathrm{x})=1 / 2 \mathrm{x}^{2}-2$
VERTICAL SHIFTS
Page 84 Exercise 1 number 2 (Try yourself)

Page 85 Exercise 2

Example for Number 1

1. $\mathrm{y}=\mathrm{x}^{2}+6 \mathrm{x}+9$

FACTORISE

$y=(x+3)^{2}$
Therefore, the shift from the origin is 3 units left.

ILLUSTRATED AS GRAPHS

HORIZONTAL AND VERTICAL SHIFTS

Standard Form to make it easier is $y=(x+p)^{2}+q$
Where p is the horizontal shift
Where q is the vertical shift
How would you change $y=x^{2}+4 x+12$ into $y=(x+p)^{2}+q$ form
COMPLETE THE SQUARE METHOD - you just not solving for x
$y=\left(x^{2}+4 x+4\right)+12-4$
$y=(x+2)^{2}+8$

$$
\left(\frac{\text { Coefficient of } b}{2}\right)^{2}\left(\frac{4}{2}\right)^{2}=2^{2}
$$

ADD and SUBTRACT TO NOT CHANGE THE EXPRESSION

There the shift from origin is 2 units to the left and 8 units up.

Page 86 Exercise 3 (ALREADY IN THE STANDARD FORM OF $y=(x+p)^{2}+q$

$$
\text { 1. } \begin{aligned}
& \text { X-INTERCEPT FORM } \\
& y=(x-4)^{2}-9 \\
& y=(x-4)(x-4)-9 \\
& y=x^{2}-8 x+16-9 \\
& y=x^{2}-8 x+7 \\
& y=(x-7)(x-1)
\end{aligned}
$$

SHIFT

$y=(x-4)^{2}-9$
Shift 4 units to the right and 9 units down

Page 86 Exercise 2 (Try yourself)

2 to 4

Function change	Shift
$f(x)+c$	Shift the graph of $f(x)$ up c units
$f(x)-c$	Shift the graph of $f(x)$ down c units
$f(x+c)$	Shift the graph of $f(x)$ left c units
$f(x-c)$	Shift the graph of $f(x)$ right c units
	Reflect the graph of $f(x)$ about the x-axis
$-f(x)$	Reflect the graph of $f(x)$ about the y-axis
$f(-x)$	Compress the graph of $f(x)$ horizontally by a factor of c.
$f(c . x)$	Stretch the graph of $f(x)$ vertically by a factor of c.
$c . f(x)$	

