Gr 11 Mathematics

Function Summary 14 July 2020

Go through the following summary of functions

Linear functions of the form y = mx + c.

Domain	XER
Range	YER
<i>m</i> changes (Gradient Changes)	The Slope changes.
<i>c</i> changes (y-intercept Changes)	The graph cuts the y axis at q. The graph can shift up or down then in comparison with original graph. Example f (x) = x-2 g(x) = x -5 The graph of g(x) cuts the y-axis at -5. Therefore g(x) has moved down 3 units from f(x) graph.

Quadratic functions of the form $y = ax^2 + q$.

Domain	XER
Range	If a is positive
	Y ≥q
	If a is negative
	Y≤q
a change	If $a \ge 0$
	The greater a value the narrower the "smile"
	If $a \le 0$ The greater a value the narrower the "sad face"
a changes	The graph cuts the view of a
q changes	The graph can shift up or down then in comparison
	with original graph.
Hyperbolic functions of the form $y = \frac{a}{x}$ +	<i>q</i> .
Domain	X E R; x≠0
Range	Y E R; y≠q
a change	The value of y at x=1 will be a The value of y at x = -1 will be a ALSO REMEMBER If a >0 $\begin{pmatrix} + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ + $

lf a< 0

Exponential functions of the form $y = ab^x + q$.

SUMMARY FOR ALL GRAPH SHIFTS

Function change	Shift
f(x) + c	Shift the graph of f(x) up c units
f(x) - c	Shift the graph of f(x) down c units
f(x + c)	Shift the graph of f(x) left c units
f(x - c)	Shift the graph of f(x) right c units
-f (x)	Reflect the graph of f(x) about the x-axis
f (-x)	Reflect the graph of f(x) about the y-axis
f(c.x)	Compress the graph of f(x) horizontally by a factor of c.
c.f(x)	Stretch the graph of f(x) vertically by a factor of c.

<u>Textbook Exercises</u> <u>Page 84 Exercise 1 number 1 (I put them on separate axes each time so you can see the graphs)</u> $1.1 f(x) = -\frac{1}{2} x^2$

1.3 g(x) = $-\frac{1}{2} x^2 + 2$

 $1.5 h(x) = \frac{1}{2} x^2$

 $1.7 \text{ k}(x) = \frac{1}{2} x^2 - 2$ VERTICAL SHIFTS Page 84 Exercise 1 number 2 (Try yourself)

Page 85 Exercise 2 Example for Number 1 1. y=x²+6x+9

FACTORISE
$$y = (x+3)^2$$

Therefore, the shift from the origin is 3 units left. **ILLUSTRATED AS GRAPHS**

$$g(x) = (x-3)$$

HORIZONTAL AND VERTICAL SHIFTS Standard Form to make it easier is $y = (x+p)^2+q$ Where p is the horizontal shift Where q is the vertical shift How would you change $y = x^2+4x+12$ into $y = (x+p)^2+q$ form COMPLETE THE SQUARE METHOD – you just not solving for x $y = (x^{2}+4x+4)+12-4$ $y = (x+2)^{2} + 8$

There the shift from origin is 2 units to the left and 8 units up.

Page 86 Exercise 3 (ALREADY IN THE STANDARD FORM OF $y = (x+p)^2+q$ 1. <u>X-INTERCEPT FORM</u>

 $y = (x-4)^2 - 9$ y = (x-4)(x-4) - 9 $y = x^2 - 8x + 16 - 9$ y = x²-8x+7 **STANDARD FORM** y = (x-7)(x-1)

 $\frac{\textbf{SHIFT}}{y = (x-4)^2 - 9}$ Shift 4 units to the right and 9 units down Page 86 Exercise 2 (Try yourself)

2 to 4

Function change	Shift
f(x) + c	Shift the graph of f(x) up c units
f(x) - c	Shift the graph of f(x) down c units
f(x + c)	Shift the graph of f(x) left c units
f(x - c)	Shift the graph of f(x) right c units
-f (x)	Reflect the graph of f(x) about the x-axis
f (-x)	Reflect the graph of f(x) about the y-axis
f(c.x)	Compress the graph of $f(x)$ horizontally by a factor of c.
c.f(x)	Stretch the graph of f(x) vertically by a factor of
	C.