CALCULUS-OPTIMISATION

> Calculus can be applied to many real-life situations, in which a set of equations need to be maximized (e.g. to make a profit) or minimized (e.g. to reduce costs)
$>$ You will often need to set up equations - so learn the formulae for perimeter, area, total surface area and volume
$>$ To maximize or minimize an equation, we will differentiate and put the equation equal to 0
$>$... i.e. the maximum or minimum point of an equation / graph is the turning point and the gradient equals O.

CALCULUS-OPTIMISATION

Example 1:

The length of a rectangle is x and its breadth is $(25-x)$.
Determine the dimensions of the rectangle in order for it to have a maximum area.

$$
\begin{aligned}
\text { Area } & =\text { length } \times \text { breadth } \\
& =x \times(25-x) \\
& =25 x-x^{2}
\end{aligned}
$$

What do we have to do to maximize or minimize?

CALCULUS-OPTIMISATION

$$
\begin{aligned}
\begin{aligned}
& \text { Area } \\
& \text { dArea }=25 x-x^{2} \\
& \frac{d x}{d x}=25-2 x \quad \begin{array}{c}
\text { Differentiate } \\
\text { and put the } \\
\text { equation equa } \\
\text { to zero! }
\end{array} \\
& 0=25-2 x \\
& 2 x=25 \\
& x=12,5 \\
& \text { Length }=x=12,5 \text { units } \\
& \text { Breadth }=25-x \\
&=25-12,5 \\
&=12,5 \text { units }
\end{aligned} \text { the }
\end{aligned}
$$

CALCULUS-OPTIMISATION

Example 2:

A cylinder has a radius of x and a height of (300x). Find the value of x in order for the volume of the cylinder to be a maximum.

$$
\begin{aligned}
\text { Volume } & =\pi r^{2} h \\
& =\pi(x)^{2}(300-x) \\
& =300 \pi x^{2}-\pi x^{3}
\end{aligned}
$$

CALCULUS-OPTIMISATION

$$
\begin{aligned}
& \text { Volume }=300 \pi x^{2}-\pi x^{3} \\
& \text { dVolume } \\
& \frac{d x}{d x}=300 \pi x-3 \pi x^{2} \\
& 0=300 \pi x-3 \pi x^{2} \\
& 0=100 x-x^{2} \\
& 0=x(100-x) \\
& x=0 \text { or } x=100 \\
& \text { Volume }=300 \pi x^{2}-\pi x^{3} \\
& =300 \pi(100)^{2}-\pi(100)^{3} \\
& \text { = } 6283 \text { 185,31 } \\
& \text { Differentiate } \\
& \text { and put the } \\
& \text { equation equal } \\
& \text { to zero! } \\
& \text { Since the } \\
& \text { question asked } \\
& \text { for a maximum, } \\
& x=100 \ldots \\
& \text { Volume }=300 \pi x^{2}-\pi x^{3}
\end{aligned}
$$

CALCULUS-OPTIMISATION SPEED, VELOCITY AND ACCELERATION

$>$ Average speed is the distance travelled divided by the time taken.
Average speed $=\frac{\text { change in distance }}{\text { change in time }}$

Example 1

I took 4 hours to travel to Johannesburg , a distance of 456 km .
Average speed $=\frac{456}{4}=114 k p h$.

CALCULUS-OPTIMISATION Speed, velocity and acceleration

Example 2

A stone falls at a distance of $s(t)=2 x^{2}-3$ meters, where t is time in seconds. Determine the average speed of the stone as it falls. Note! s represents
Distance travelled in ... distance and 2 seconds: $\quad s(2)=2(2)^{2}-3=5 \mathrm{~m}$ not speed!
3 seconds: $s(3)=2(3)^{2}-3=15 \mathrm{~m}$
Average speed $=\frac{15-5}{3-2}=10 \mathrm{mper} \mathrm{sec}$

CALCULUS-OPTIMISATION SPEED, VELOCITY AND ACCELERATION

$>$ Instantaneous speed - or VELOCITY - is the speed taken at one particular point in time Velocity $=$ derivative of distance

$$
v=d^{\prime}(\text { Distance })
$$

Example 1

Determine the velocity at 3 seconds, if the distance of a particle can be given by: $s(t)=20-5 t$ (where $\dagger=$ seconds). $\mathrm{s}^{\prime}(\mathrm{t})=-5$.

Note! s'(t) is the derivative of distance $=$ velocity!

CALCULUS-OPTIMISATION Speed, velocity and acceleration

Example 2

Determine the speed I was travelling at the exact time of 4 seconds, when the speed trap camera flashed after I had covered a distance of 120x meters.

$$
\begin{aligned}
& \text { Average speed }=\frac{120 x}{4}=30 x \text { meters per sec } \\
& \begin{array}{l}
\text { Acceleration }=d^{\prime}(\text { Speed }) \\
\quad=30 \text { meters per second }
\end{array}
\end{aligned}
$$

CALCULUS-OPTIMISATION SPEED, VELOCITY AND ACCELERATION

$>$ Instantaneous velocity - or ACCELERATION - is the velocity taken at one particular point in time Acceleration = derivative of velocity

$$
a=d^{\prime}(\text { Velocity })
$$

Example 1

Determine the acceleration of a particle, if the velocity can be given by $\mathbf{v}(\mathrm{t})=6 \mathrm{t}$ (where $\mathrm{t}=$ seconds). $\mathrm{v}^{\prime}(\mathrm{t})=6$.

CALCULUS-OPTIMISATION Speed, velocity and acceleration

Example 2

If the distance of an object can be represented by the equation: $s(t)=4 t^{2}-6 t+1$, determine the acceleration of the object.

$$
\begin{array}{ccc}
s(t)=4 t^{2}-6 t+1 & \ldots \text { Distance } \\
s^{\prime}(t)=8 t-6 & \ldots \text { Velocity } \\
s^{\prime \prime}(t)=8 & \ldots . \text { Acceleration } \tag{Acceleration}
\end{array}
$$

