1

EXPONENTIAL AND LOG GRAPHS INCREASING AND DECREASING

REVISION DEFINITION OF A LOG

- The inverse of an exponent is a log

Exponential equation:
$x=a^{y}$

Interchange x and y for inverse:
$y=a^{x}$

Log equation:
$y=\log _{a} x \quad$ where $a, y>0$ and $a \neq 1$

Examples: Converting between exponential and log forms

Write in log form:

1. $y=5^{x}$

$$
\begin{gathered}
x=5^{y} \\
y=\log _{5} x
\end{gathered}
$$

- First interchange x and y
- The base of the exponent becomes the base of the log

2. $y=3^{-x}$

$$
y=\left(\frac{1}{3}\right)^{x}
$$

$$
x=\left(\frac{1}{3}\right)^{y}
$$

$$
y=\log _{\frac{1}{3}} x
$$

SKETCHING EXPONENTIAL AND LOG GRAPHS

Increasing exponential graph: $f(x): y=2^{x}$

- No x-intercept as asymptote at $y=0$
- y-int: $y=2^{0}=1$
- Domain: $x \in R$
- Range: $\mathrm{y}>0$

SKETCHING EXPONENTIAL AND LOG GRAPHS

Increasing log graph: $f(x): y=\log _{2} x$

- No y-intercept as
asymptote at $x=0$
- x-int: $0=\log _{2} x$

$$
x=2^{0}=1
$$

- Domain: $x>0$
- Range: $y \in R$

Increasing Exponential Increasing Log

Graph: $y=2^{x}$
Graph: $y=\log _{2} x$

Together

INCREASING EXPONENTIAL AND LOG GRAPHS

SKETCHING EXPONENTIAL AND LOG GRAPHS

Decreasing exponential graph: $f(x): y=\left(\frac{1}{2}\right)^{x}$

- No x-intercept as asymptote at $y=0$
- y-int: $y=\left(\frac{1}{2}\right)^{0}=1$
- Domain: $x \in R$
- Range: $y>0$

SKETCHING EXPONENTIAL AND LOG GRAPHS

Decreasing log graph: $f(x): y=\log _{\frac{1}{2}} x$

- No y-intercept as
asymptote at $x=0$
- x-int: $0=\log _{\frac{1}{2}} x$

$$
x=\left(\frac{1}{2}\right)^{0}=1
$$

- Domain: $x>0$
- Range: $y \in R$

Together

DECREASING EXPONENTIAL AND LOG GRAPHS

EXERCISE 1

- Sketch the function and inverse of the following:
- A. $\mathrm{f}(\mathrm{x})=3^{x}$
- B. $g(x)=\frac{1}{3}^{x}$

EXERCISE 1 ANSWERS

