EXPONENTIAL AND LOG GRAPHS INCREASING AND DECREASING

REVISION DEFINITION OF A LOG

• The inverse of an exponent is a log

Exponential equation: $x = a^y$

Interchange x and y for inverse: $y = a^x$

Log equation: $y = log_a x$ where a, y > 0 and $a \neq 1$

Examples: Converting between exponential and log forms

Write in log form:

1. $y = 5^x$ $x = 5^y$ $y = \log_5 x$

2. $y = 3^{-x}$

 $y = \left(\frac{1}{3}\right)^{x}$ $x = \left(\frac{1}{3}\right)^{y}$ $y = \log_{\frac{1}{2}} x$

• First interchange x and y

• The base of the exponent becomes the base of the log

Increasing exponential graph: f(x): $y = 2^x$

• No x-intercept as

asymptote at y = 0

- y-int: $y = 2^0 = 1$
- Domain: $x \in R$
- Range: y > 0

R

Increasing log graph: f(x): $y = log_2 x$ No y-intercept as asymptote at x = 0• x-int: $0 = log_2 x$ -25 -2 -15 -0.5 25 05 35 55 $x = 2^0 = 1$ • Domain: x > 0Range: $y \in R$

Increasing Exponential Increasing Log Graph: $y = log_2 x$ Graph: $y = 2^x$

Together

INCREASING EXPONENTIAL AND LOG GRAPHS

Decreasing exponential graph: f(x): $y = (\frac{1}{2})^x$

• No x-intercept as

asymptote at y = 0

- y-int: $y = \left(\frac{1}{2}\right)^0 = 1$
- Domain: $x \in R$
- **Range:** y > 0

Decreasing log graph: f(x): $y = log_{\underline{1}}x$

• No y-intercept as

asymptote at x = 0

• x-int: $0 = log_{\frac{1}{2}}x$

$$x = \left(\frac{1}{2}\right)^0 = 1$$

- Domain: x > 0
- Range: $y \in R$

Decreasing Exponential Decreasing Log Graph: $y = \frac{1}{2} \times$ Graph: $y = \log_{\frac{1}{2}} x$

Together

EXERCISE 1

- Sketch the function and inverse of the following:
- A. $f(x) = 3^x$

• B. g(x) =
$$\frac{1}{3}^{x}$$

EXERCISE 1 ANSWERS

