Analytical Geometry

Gr 11

Revise

Length between two points

FORMULA

$$
\text { Length }=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

1. Determine the length of the line segment between the following points:
a) $P(-3 ; 5)$ and $Q(-1 ;-5)$
b) $R(0,75 ; 3)$ and $S(0,75 ;-4)$
c) $T(2 x ; y-2)$ and $U(3 x+1 ; y-2)$

Solution:

a)

$$
\begin{aligned}
P Q & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& =\sqrt{(-1+3)^{2}+(-5-5)^{2}} \\
& =\sqrt{(2)^{2}+(-10)^{2}} \\
& =\sqrt{4+100} \\
& =\sqrt{104} \\
& =2 \sqrt{26} \text { units }
\end{aligned}
$$

b)

$$
\begin{aligned}
R S & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& =\sqrt{(0,75-0,75)^{2}+(-4-3)^{2}} \\
& =\sqrt{(0)^{2}+(-7)^{2}} \\
& =\sqrt{49} \\
& =7 \text { units }
\end{aligned}
$$

c)

$$
\begin{aligned}
T U & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& =\sqrt{(3 x+1-2 x)^{2}+(y-2-y+2)^{2}} \\
& =\sqrt{(x+1)^{2}+(0)^{2}} \\
& =\sqrt{(x+1)^{2}} \\
& =x+1 \text { units }
\end{aligned}
$$

The Equation of line through two points.

Summary

If you know	Formulae to use
The gradient and the y-intercept	$y=m x+c$
The gradient and the coordinates of at least	
one point on the graph.	$y-y_{1}=m\left(x-x_{1}\right)$ or $y=m x+c$ Two points on the line: first calculate the gradient and then substitute into $y=m x+c$.
$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$ and $y=m x+c$	

Example 1

Determine the equation of the straight line passing through the points:

1. $(3 ; 7)$ and $(-6 ; 1)$

- Answer Work out the gradient

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{1-7}{-6-3}=\frac{-6}{-9}=\frac{2}{3}
$$

- Substitute into $\mathrm{y}=\mathrm{mx}+\mathrm{c}$

$$
y=\frac{2}{3} x+c
$$

- Substitute one of the points in. Here (3;7)is used

$$
\begin{gathered}
(7)=\frac{2}{3} \cdot(3)+c \\
7=2+c \\
7-2=c \\
c=5
\end{gathered}
$$

- Therefore

$$
y=\frac{2}{3} x+5
$$

Example 2

Determine the equation of the straight line that passes through the points $P(1 ; 2)$ and $Q(3 ; 8)$ in the form $y=$....
First calculate the gradient of PQ :
$m=\frac{y_{2}-y_{1}}{x_{2}-X_{1}}=\frac{8-2}{3-1}=\frac{6}{2}=3 \checkmark$
Then use the form $y-y_{1}=m\left(x-x_{1}\right)$
$y-y_{1}=3\left(x-x_{1}\right) \checkmark$
Substituting $\mathrm{P}(1 ; 2)$
$y-2=3(x-1)$
$y-2=3 x-3$
\therefore The equation of linePQ is $y=3 x-1 . \Omega$

Example 3

Line $A B$ is perpendicular to $C D$, which has a gradient of -2 . The point $(3 ; 4)$ lies on $A B$. Determine the equation of line $A B$.

$$
\begin{aligned}
& m_{\mathrm{CD}}=-2 \text { and } \mathrm{CD} \perp \mathrm{AB} . \\
& \therefore m_{\mathrm{AB}}=\frac{1}{2}
\end{aligned}
$$

So now we have $y=\frac{1}{2} x+c$
Substitute $(3 ; 4)$ to find the value of c.
$4=\frac{1}{2}(3)+c \checkmark$
$c=4-1 \frac{1}{2}$
$\therefore c=2 \frac{1}{2}$
equation of line AB is $y=\frac{1}{2} x+2 \frac{1}{2}, ~$

Example 4

If the gradient of a line is -2 and the line cuts the y-axis at 1 , then the equation of the line is $y=-$ $2 x+1$.

Example 5

If the gradient of a line is -2 and the point $(4 ;-1)$ lies on the line, find the equation of the line.
$y-y_{1}=m\left(x-x_{1}\right)$
$y-(-1)=-2(x-4) \quad$ substitute $(4 ;-1)$ into the equation
$y+1=-2 x+8$ simplify
$y=-2 x+7$
We usually put the answer in the form $y=m x+c$.

