Grade 12

Past Paper Question

June 2019

QUESTION 4

Given the exponential function: $g(x)=\left(\frac{1}{2}\right)^{x}$
4.1 Write down the range of g.
4.2 Determine the equation of g^{-1} in the form $y=\ldots$
4.3 Is g^{-1} a function? Justify your answer.
4.4 The point $\mathrm{M}(a ; 2)$ lies on g^{-1}.
4.4.1 Calculate the value of a.
4.4.2
M^{\prime}, the image of M , lies on g. Write down the coordinates of M^{\prime}.
4.5 If $h(x)=g(x+3)+2$, write down the coordinates of the image of M^{\prime} on h.

QUESTION/VRAAG 4

4.1	$y>0$ OR/OF $y \in(0 ; \infty)$	\checkmark answer OR/OF \checkmark answer	(1) (1)
4.2	$\begin{aligned} & g: y=\left(\frac{1}{2}\right)^{x} \\ & g^{-1}: x=\left(\frac{1}{2}\right)^{y} \\ & y=\log _{\frac{1}{2}} x \quad \text { or } \quad y=-\log _{2} x \quad \text { or } \quad y=\log _{2} \frac{1}{x} \end{aligned}$	$\checkmark x=\left(\frac{1}{2}\right)^{y}$ \checkmark equation	(2)
4.3	Yes. The vertical line test cuts g^{-1} once Ja. Die vertikale lyn toets sny g^{-1} slegs eenkeer. OR/OF Yes. For every x-value there is a unique y-value Ja. Vir elke x-waarde is daar ' n unieke y-waarde OR/OF Yes. g is a one-to-one function / Ja. g is 'n een-tot-een funksie OR/OF Yes. The horizontal line cuts g only once Ja. Die horisontale lyn sny g slegs een keer	\checkmark yes \checkmark valid reason OR/OF \checkmark yes \checkmark valid reason OR/OF \checkmark yes \checkmark valid reason OR/OF \checkmark yes \checkmark valid reason	(2) (2) (2)

4.4.1	$y=-\log _{2} x$ $2=-\log _{2} a$ $a=2^{-2}=\frac{1}{4} \quad$ or $\quad a=\left(\frac{1}{2}\right)^{2}=\frac{1}{4}$	\checkmark correct subst into correct formula $(a ; 2)$	
4.4 .2	$\mathrm{M}^{\prime}\left(2 ; \frac{1}{4}\right)$ or $\mathrm{M}^{\prime}(2 ; a)$	\checkmark answer	(2)
4.5	$\mathrm{M}^{\prime \prime}\left(-1 ; \frac{9}{4}\right)$	$\checkmark-1$ 	$\checkmark \frac{9}{4}$
			(1)

