GRADE 12 COUNTING PRINCIPLES AND PROBABILITY PART 2

TERMINOLOGY RECAP

- Probability lies between 0 (impossible event) and 1 (certain event)
- If P(Event) = 1 means that it will definitely occur • If P(Event) = 0 means that it is an impossible even
- If P(Event) = 0 means that it is an impossible event

• If all events are equally likely, then the probability of the event is: $P(Event) = \frac{P(Successful \; Event)}{Total \; number \; of \; events}$

Sample space is made up of all the possible events

TERMINOLOGY RECAP

Set notation is often used, where
∪ is the union of sets
-> operation is OR
∩ is the intersection of sets
-> operation is AND

TOOLS USED IN PROBABILITY

Venn Diagrams

Show all possible logical relations between a finite collection of sets

TOOLS USED IN PROBABILITY

Tree Diagrams

Have branches which show the possible outcomes of multiple types of events

TOOLS USED IN PROBABILITY

Contingency Table

Is a two-way table consisting of 2 variables to summarize data and compare the variables.

+		2	3	4	5	6
	2	3	4	5	6	7
2	3	4	5	6	7	8
3	4	5	6	7	8	9
4	5	6	7	8	9	10
5	6	7	8	9	10	11
6	7	8	9	10	11	12

FUNDAMENTAL COUNTING PRINCIPLE

• If successive choices are made from m_1, m_2 , m_3, \ldots, m_n ; then the number of combined options is the product thereof:

 $m_1 \times m_2 \times m_3 \times \cdots \times m_n$

Example I:

How many different outfits can I wear if I have 5 shirts, 3 pants and 4 shoes to wear? $5 \times 3 \times 4 = 60$ different outfits

Fundamental Counting Principle

Example 2:

How many different combinations of meals could I order if I could choose from the following:

- a soda or juice (2 choices)
- > a sandwich on a bagel, rye bread or white bread (3 choices)
- with cheese, pastrami, roast beef or turkey as a filling? (4 choices) Answer
- $2 \times 3 \times 4 = 24$ choices

Fundamental Counting Principle illustrated by a Tree Diagram

Example 3 (using a Tree Diagram):

How many different combinations of meals could I order if I could choose from the following:

- a soda or juice
- > a sandwich on a bagel, rye bread or white bread
- > with cheese, pastrami, roast beef or turkey as a filling?

Fundamental Counting Principle illustrated by a Tree Diagram Example 3 Answer

Fundamental Counting Principle

Example 4:

How many different party packs can be chosen from each of the following:

- BarOne; Kit-Kat; Smarties; Tex; Aero; Nosh; or M&M's (7 choices)
- Coke; Fanta; Cream Soda or Sprite (4 choices)
- Nik-Naks; Lays; or Simba (3 choices)
- Peanut butter or Marmite sandwich (2 choices)

$7 \times 4 \times 3 \times 2 = 168$ different party packs

Fundamental Counting Principle

Example 5:

 $\mathsf{F}\Delta$

How many possible letter arrangements can be made from the word "MATHS", if:

a) the letters may be repeated? $5 \times 5 \times 5 \times 5 \times 5 = 5^5 = 3125$

b) the letters may NOT be repeated?

 $5 \times 4 \times 3 \times 2 \times 1 = 5! = 120$

