GRADE 12 COUNTING PRINCIPLES AND PROBABILITY PART
 2

TERMINOLOGY RECAP

- Probability lies between 0 (impossible event) and I (certain event)
- If $\mathrm{P}($ Event $)=\mathrm{I}$ means that it will definitely occur
- If $\mathrm{P}($ Event $)=0$ means that it is an impossible event
- If all events are equally likely, then the probability of the event is: $P($ Event $)=\frac{P(\text { Successful Event })}{\text { Total number of events }}$

TERMINOLOGY RECAP

- Set notation is often used, where
U is the union of sets
-> operation is OR
\cap is the intersection of sets
-> operation is AND

TOOLS USED IN PROBABILITY

Venn Diagrams

Show all possible logical relations between a finite collection of sets

2-(D) Shapes

Rectangle
Square

TOOLS USED IN PROBABILITY

Tree Diagrams
Have branches which show the possible outcomes of multiple types of events

TOOLS USED IN PROBABILITY

Contingency Table
Is a two-way table consisting of 2 variables to summarize data and compare the variables.

+	1	2	3	4	5	6
1	2	3	4	5	6	7
2	3	4	5	6	7	8
3	4	5	6	7	8	9
4	5	6	7	8	9	10
5	6	7	8	9	10	11
6	7	8	9	10	11	12

FUNDAMENTAL COUNTING PRINCIPLE

- If successive choices are made from m_{1}, m_{2}, $m_{3}, \ldots m_{n}$; then the number of combined options is the product thereof:

$$
m_{1} \times m_{2} \times m_{3} \times \cdots \times m_{n}
$$

Example I:
How many different outfits can I wear if I have 5
shirts, 3 pants and 4 shoes to wear?

$$
5 \times 3 \times 4=60 \text { different outfits }
$$

Fundamental Counting Principle

Example 2:

How many different combinations of meals could I order if I could choose from the following:
$>$ a soda or juice (2 choices)
$>$ a sandwich on a bagel, rye bread or white bread (3 choices)
$>$ with cheese, pastrami, roast beef or turkey as a filling? (4 choices)
Answer
$2 \times 3 \times 4=24$ choices

Fundamental Counting Principle illustrated by a Tree Diagram

Example 3 (using a Tree Diagram):

How many different combinations of meals could I order if I could choose from the following:
$>$ a soda or juice
$>$ a sandwich on a bagel, rye bread or white bread
$>$ with cheese, pastrami, roast beef or turkey as a filling?

Fundamental Counting Principle illustrated by a Tree Diagram Example 3 Answer

Fundamental Counting Principle

Example 4:

How many different party packs can be chosen from each of the following:

- BarOne; Kit-Kat; Smarties;Tex;Aero; Nosh; or M\&M's (7 choices)
- Coke; Fanta; Cream Soda or Sprite (4 choices)
- Nik-Naks; Lays; or Simba (3 choices)
- Peanut butter or Marmite sandwich (2 choices)

$$
7 \times 4 \times 3 \times 2=168 \text { different party packs }
$$

Fundamental Counting Principle

Example 5:

How many possible letter arrangements can be made from the word
"MATHS", if:
a) the letters may be repeated?

$$
5 \times 5 \times 5 \times 5 \times 5=5^{5}=3125
$$

b) the letters may NOT be repeated?

$$
5 \times 4 \times 3 \times 2 \times 1=5!=120
$$

