EXPONENTIAL GRAPHS

VISUAL SUMMARY -
INVERSES

$y=2^{x}$
Asymptote: $\mathrm{y}=0$ (x -axis)
Y-Intercept (when $x=0$): $(0 ; 1)$
X-Intercept (when $\mathrm{y}=0$): Does not exist
Domain: $x \in \mathbb{R}$
Range: $y>0$

x becomes y and y becomes x in an inverse function $x=2^{y}$ is the same as $y=\log _{2} x$
Asymptote: $\mathrm{x}=0$
(Y -Intercept (when $\mathrm{x}=0$): Does not exist X-Intercept (when $\mathrm{y}=0$): $1 ; 0$)
Domain: $x>0$ Range: $y \in \mathbb{R}$

Example 1 (Mixed Question)

The curve of an exponential function is given by $f(x)=k^{x}$ and cuts the y axis at $A(0 ; 1)$ while $B\left(2 ; \frac{9}{4}\right)$ lies
on the curve.
Determine
1.1 the equation of the function f.
1.2 the equation of the asymptote of h if $h(x)=-f(x)$.
1.3 the range of h.
1.4 The equation of the function g of which the curve is the reflection of the curve of f in the line $y=x$.

GRAPHS- EXPONENTALGRAPHSINVERSES

Answers to Example 1 (Mixed Question)

The curve of an exponential function is given by $f(x)=k^{x}$ and cuts the y-axis at A $(0 ; 1)$ while $B\left(2 ; \frac{9}{4}\right)$ lies on the curve.

ANSWERS

1.2 the equation of the asymptote of h if $h(x)=-f(x)$.

$$
f(x)=\frac{3}{2}
$$

$$
h(x)=-\left(\frac{3}{2}\right)
$$

ASSYMPTOTE IS THE X-AXIS $y=0$

GRAPHS- EXPONENTALGRAPHSINVERSS

Answers to Example 1 (Mixed Question)

The curve of an exponential function is given by $f(x)=k^{x}$ and cuts the y-axis at A $(0 ; 1)$ while $B\left(2 ; \frac{9}{4}\right)$ lies on the curve.

ANSWERS

1.3 the range of h.

ASYMPTOTE IS $\mathrm{y}=0$
ALL VALUES BELOW THAT LINE $(y=0)$ IS THE RANGE Therefore $\mathrm{y}<0$

Answers to Example 1 (Mixed Question)

The curve of an exponential function is given by $f(x)=k^{x}$ and cuts the y axis at $A(0 ; 1)$ while $B\left(2 ; \frac{9}{4}\right)$ lies on the curve.

ANSWERS

1.4 The equation of the function of which the curve is the reflection of the curve of f in the line $y=x$.

REFLECTION OF THE CURVE IN THE LINE $y=x$ IS THE INVERSE OF THE FUNCTION
$f(x)=3^{3}$
$g(x)=f^{-1}(x)$
THE INVERSE OF A FUNCTION IS WHERE x BECOMES y AND Y BECOMES x.
$y=\frac{3}{2}^{x}$
$x=\frac{3}{2}$
$x=\frac{3}{2}$
$y=\log _{\frac{3}{2}} x$
$\therefore g(x)=\log _{\frac{3}{2}} x$

$f(x)=2^{x+3}$
DETERMINE THE INVERSE
$y=2^{x+3}$
x becomes y and y becomes x
$x=2^{y+3}$
$y+3=\log _{2} x$
$y=\log _{2} x-3$

$$
\begin{aligned}
& f(x)=2^{x+3}+4 \\
& \text { DEIERMINETHEINVERSE } \\
& y=2^{x+3}+4 \\
& \text { x becomes y and y becomes } x \\
& x=2^{y+3}+4 \\
& \mathrm{x}-4=2^{y+3} \\
& y+3=\log _{2}(x-4) \\
& y=\log _{2}(x-4)-3
\end{aligned}
$$

