GRADE 12

Financial Maths

Simple and Compound Interest

FINANCIAL MATHS REVISION

Simple Interest:

$A=P(1+n i)$

Compound Interest:

$A=P(1+i)^{n}$

> A = total amount (End Amount) $\mathrm{P}=$ principle amount (Beginning Amount)
$n=$ number of time periods
$i=$ interest rate
TO WORK OUT n :
Substitute for A, P and i

- Simplify
- Write in logarithmic form
- Use the log keys on the calculator
- Round off the answer to the nearest year

FINANCIAL MATHS REVISION

Simple Decay:

$A=P(1-n i)$

Compound Decay:

$A=P(1-i)^{n}$

A = total amount (End Amount)
$\mathrm{P}=$ principle amount (Beginning Amount)
$n=$ number of time periods
$i=$ interest rate

TO WORK OUT n :

Substitute for A, P and i

- Simplify
- Write in logarithmic form
- Use the log keys on the calculator
- Round off the answer to the nearest year

FINANCIAL MATHS-COMPOUND AND SIMPLE DECAY

- Decay or depreciation is when a quantity decreases by a percentage of the amount present. For example, your assets (house, car) and machinery lose value through age and use.
- Ways of calculating depreciation
- Simple decay or depreciation: $\mathrm{A}=\mathrm{P}(1-n i)$
- This is also called straight line depreciation because it can be represented with a straight line graph.

FINANCIAL MATHS- SIMPLE DECAY

EXAMPLE 1

A car worth R120 000 depreciates at a rate of 12% (simple interest) p.a.
How much will the car be worth after 5 years?
$A=$?
$P=R 120000$
$\mathrm{i}=12 \%=\frac{12}{100}=0.12$
$A=P(1-i . n)$
$A=120000(1-0.12 \times 5)$
$A=48000$
$\mathrm{n}=5$ years
The car is worth $R 48000$ after 5 years

The same formula as Simple Interest except there is a minus

FINANCIAL MATHS- COMPOUND DECAY

EXAMPLE 2

A car worth R120 000 depreciates at a rate of 12% p.a. (on a reducing balance). How much will the car be worth after 5 years?

```
A= ?
    A=P(1-i)
P=R120000
i= 12% = 年
n=5 years
    A=120000(1-0.12)}\mp@subsup{}{}{5
    A = 63327.83002 ...
    .The car is worth R63327.83 after 5 years
The same formula as Compound Interest except there is a minus
```


EXAMPLE 3

The value of a piece of machinery depreciates from R10 000 to $\mathrm{R}_{5} 000$ in 4 years. What is the rate of depreciation, correct to two decimal places, if calculated on the:
a) Straight line method (i.e. simple depreciation)
$A=R 5000$
$\mathrm{P}=\mathrm{R} 10000$
$\mathrm{i}=$?
$\mathrm{n}=4$ years
b) Reducing balance (i.e. compound depreciation)

$$
\begin{aligned}
& A=R 5000 \\
& P=R 10000 \\
& i=? \\
& n=4 \text { years }
\end{aligned}
$$

$$
\begin{aligned}
& A=P(1-i . n) \\
& 5000=10000(1-i .4) \\
& \frac{5000}{10000}=1-i .4 \\
& \frac{1}{2}-1=-i .4 \\
& -\frac{1}{2}=-i .4 \\
& \frac{1}{2}=i \\
& 0.125=i \\
& \therefore \text { The interest rate is } 12.5 \% \\
& A=P(1-i)^{n} \\
& 5000=10000(1-i)^{4} \\
& \frac{5000}{10000}=(1-i)^{4} \\
& \frac{1}{2}=(1-i)^{4} \\
& \sqrt[4]{\frac{1}{2}}=1-i \\
& \sqrt[4]{\frac{1}{2}}-1=-i \\
& 0.1591035=i \\
& \therefore \text { The interest rate is } 15.9 \%
\end{aligned}
$$

