GRADE 12

Financial Maths

Simple and Compound Interest

FINANCIAL MATHS REVISION

Simple Interest:
$A=P(1+n i)$

Compound Interest:

$$
A=P(1+i)^{n}
$$

A = total amount (End Amount)
$\mathrm{P}=$ principle amount (Beginning Amount)
$n=$ number of time periods
$i=$ interest rate

Note! Principle is a ONCE-OFF event!

Examples

Example 1

If you borrow R300 at 9% p.a simple interest, how much will you owe after 7 years?

```
A= ?
P= R300
i= 9% = 爯 =0.09
```

```
A=P(1+i.n)
```

A=P(1+i.n)
A=300(1+0.09 × 7)
A=300(1+0.09 × 7)
\therefore You owe $R 489$ after 7 years

```
```

A=489

```
A=489
\thereforeYou owe R489 after 7 years
```

\thereforeYou owe R489 after 7 years

```
\(\mathrm{n}=7\)
\(\mathrm{n}=7\)

\section*{Example 2}

If you borrow R300 at 9\% p.a compound interest, how much will you owe after 7 years?
\[
\begin{aligned}
& A=? \\
& P=R 300 \\
& i=9 \%=\frac{9}{100}=0.09 \\
& n=7
\end{aligned}
\]
\[
A=P(1+i)^{n}
\]
\[
A=300(1+0.09)^{7}
\]
\[
A=548,411736 \ldots
\]
\(\therefore\) You owe R548,41 after 7 years
REMEMBERTO ROUND OFFTO TWO DECIMAL PLACES WHEN WORKING WITH MONEY

\section*{Examples}

\section*{Example 3}

You invest R1 570 at 11\% p.a. compounded monthly.
a) How much will you receive after 7 years?
\(A=\) ?
\(\mathrm{P}=\mathrm{R} 1570\)
\(\mathrm{i}=11 \%=\frac{11}{100}=0.11\). Compounde monthly \(\frac{0.11}{12}\)
\(n=7\) years compounded monthly means \(n=7 X_{12}=84\)
b) How much interest have you earned after 7 years? R3378,96-R1570 = R1808,96 Interest Received
\(A=P(1+i)^{n}\)
\(A=1570 .\left(1+\frac{0.11}{12}\right)^{84}\)
\(A=3378.959680888\)
\(\therefore\) You will receive R3378,96 after 7 years

\section*{Interest per annum compounded:}
monthly \(\rightarrow \frac{i}{12}\)
quarterly \(\rightarrow \frac{i}{4}\)
\(n\) years \(\times 12\) months
semi-annually or half-yearly, (every 6 months) \(\rightarrow \frac{i}{2}\)
\(n\) years \(\times 4\) quarters in the year
\(n\) years \(\times 2\)

\section*{Examples}

\section*{Example 4}

You invest R1 700 at an interest rate of \(10 \%\) compounded quarterly. Calculate how much your investment is worth after 6 years.
\(A=\) ?
\(\mathrm{P}=\mathrm{R} 1700\)
\(i=10 \%=\frac{10}{100}=0.10 \quad\) Compounde quarterly \(\frac{0.10}{4}\)
\(n=6\) years compounded quarterly means \(n=6 X_{4}=24\)
\[
\begin{aligned}
& A=P(1+i)^{n} \\
& A=1700 \cdot\left(1+\frac{0.10}{4}\right)^{24} \\
& A=3074.83 \\
& \therefore \text { You will receive } R 3074.83 \text { after } 6 \text { years }
\end{aligned}
\]

\section*{Example 5}

R25 000 is invested into a savings account. Calculate the value of the investment of the savings after 5 years if interest rate is \(11 \%\) compounded semi-annually.
\(\mathrm{A}=\) ?
\[
A=P(1+i)^{n}
\]
\(\mathrm{P}=\mathrm{R} 25000\)
\(\mathrm{i}=11 \%=\frac{11}{100}=0.11 \quad\) Compounded semi - annually \(\frac{0.11}{2}\)
\(A=25000 .\left(1+\frac{0.11}{2}\right)^{10}\)
\(n=5\) years compounded semi - annually means \(n=5 \times 2=10\)
\(A=42703.61\)
\(\therefore\) You will receive R42 703.61 after 5 years

\section*{Calculating the value of \(P, i\) and \(n\)}

We can also use the formulae for compound and simple interest to calculate the principal \(P\), the rate of interest \(i\), or the time period \(n\).

\section*{Example 6}

How much must John invest now so that after 5 years at \(8 \%\) simple interest, he will have \(\mathrm{R}_{4}\) 200?
\(A=R_{4} 200\)
\(\mathrm{P}=\) ?
\(\mathrm{i}=8 \%=\frac{8}{100}=0.08\)
\(\mathrm{n}=5\) years
\[
\begin{aligned}
& A=P(1+i . n) \\
& 4200=P(1+0.08 \times 5) \\
& \frac{4200}{1.4}=P \\
& 3000=P \\
& \therefore \text { John must invest } R 3000
\end{aligned}
\]

\section*{Example 7}

A population increases from 12000 to 214000 in 10 years. At what annual (compound) rate does the population grow? (Give your answer correct to one decimal place.) \(A=P(1+i)^{n}\)
\(A=12000\)
\(P=214000\)
\(\mathrm{i}=\) ?
\(n=10\)

NEED TO MULTIPLY BY 100 TO GET INTEREST RATE
\[
\begin{aligned}
& 12000=214000 \cdot(1+i)^{10} \\
& \frac{12000}{214000}=(1+i)^{10} \\
& 10 \\
& \sqrt{\frac{12000}{214000}}=1+i \\
& 1.333899939-1=i \\
& 0.333899939=i
\end{aligned}
\]
\[
33,4 \%=\text { interest rate }
\]

\section*{Calculating the value of \(P, i\) and \(n\)}

We can also use the formulae for compound and simple interest to calculate the principal \(P\), the rate of interest \(i\), or the time period \(n\).

\section*{Example 8}

How many months will it take Justin to save for his motorbike, if he is able to invest R800, at an interest rate of \(14 \%\) p.a. compounded monthly; and the motorbike costs R42 000?

Make the right hand side one fraction in the
\(A=R 42000\)
\(\mathrm{P}=\mathrm{R} 800\)
\(i=\frac{14 \%}{12}=\frac{\frac{14}{100}}{12}=\frac{0.14}{12}\)
\(\mathrm{n}=\) ?
\[
\begin{array}{ll}
A=P(1+i)^{n} & \begin{array}{l}
\text { brackets. So } 1 \text { becomes } \frac{12}{12} \\
42000=800\left(1+\frac{0.14}{12}\right)^{n}
\end{array} \\
\frac{42000}{800}=\left(1+\frac{0.14}{12}\right)^{n} & \\
52.5=\left(\frac{12}{12}+\frac{0.14}{12}\right)^{n} & \\
52.5=\left(\frac{12,14}{12}\right)^{n} & \text { Make use of LOGS as } \\
n=\log _{\frac{12.14}{12}} 52.5 & y=a^{x} \text { becomes } \mathrm{x}=\log _{a} y \\
n=341.47 &
\end{array}
\]```

