

TRIANGLES (3 REASONS)

2x

-x

Angles of a Δ add up to **180°**.

The exterior angle of a triangle is equal to the **SUM OF THE OPPOSITE INTERIOR ANGLES**.

StatementReason $2x + 60^\circ = 120^\circ - x$ $Ext \angle of \Delta$ $2x + x = 120^\circ - 60^\circ$ $ax = 60^\circ$ $3x = 60^\circ$ $x = 20^\circ$

$\angle opp = sides$

Solve for *x*

StatementReason $(x + 20^\circ) + x = (3x - 10^\circ)$ $Ext \angle of \Delta$ $x + 20^\circ + x = 3x - 10^\circ$ $x + x - 3x = -10^\circ - 20^\circ$ $x + x - 3x = -10^\circ - 20^\circ$ $-x = -30^\circ$ $x = 30^\circ$ $x = 30^\circ$

Solve for *y*

StatementReason
$$15^{\circ} + (3x - 10^{\circ}) + 2y = 180^{\circ}$$
 $\angle's \ in \ a \ \Delta$ $15^{\circ} + 3(30^{\circ}) - 10^{\circ} + 2y = 180^{\circ}$ $15^{\circ} + 90^{\circ} - 10^{\circ} + 2y = 180^{\circ}$ $15^{\circ} + 90^{\circ} - 10^{\circ} + 2y = 180^{\circ}$ $95 + 2y = 180$ $95 + 2y = 180$ $2y = 180 - 95$ $2y = 85$ $y = 42,5$

Solve for *x*

StatementReason $(x + 20^\circ) + x = (3x - 10^\circ)$ $Ext \angle of \Delta$ $x + 20^\circ + x = 3x - 10^\circ$ $x + x - 3x = -10^\circ - 20^\circ$ $x + x - 3x = -10^\circ - 20^\circ$ $x = -30^\circ$ $x = 30^\circ$ $x = 30^\circ$

Solve for *y*

StatementReason
$$15^{\circ} + (3x - 10^{\circ}) + 2y = 180^{\circ}$$
 $\angle's \text{ in } a \Delta$ $15^{\circ} + 3(30^{\circ}) - 10^{\circ} + 2y = 180^{\circ}$ $15^{\circ} + 90^{\circ} - 10^{\circ} + 2y = 180^{\circ}$ $15^{\circ} + 90^{\circ} - 10^{\circ} + 2y = 180^{\circ}$ $95 + 2y = 180$ $95 + 2y = 180$ $2y = 180 - 95$ $2y = 85$ $y = 42,5$

Solve for *x*

StatementReason $(x + 20^\circ) + x = (3x - 10^\circ)$ $Ext \angle of \Delta$ $x + 20^\circ + x = 3x - 10^\circ$ $x + x - 3x = -10^\circ - 20^\circ$ $-x = -30^\circ$ $x = 30^\circ$

Solve for *z*

Statement	Reason
$x + 20^{\circ} + x + z = 180^{\circ}$	\angle 's in a Δ
$(30^{\circ}) + 20^{\circ} + (30^{\circ}) + z = 180^{\circ}$	
$80^{\circ} + z = 180^{\circ}$	
$z = 180^{\circ} - 80^{\circ}$	
$z = 100^{\circ}$	

EXERCISE 13.1 Pg. 126 (No. 1a-d, 2a)

EXERCISE 13.1 Pg. 126 (No. 1a-d, 2a)

1. Solve for *x* and classify each triangle.

QUADRILATERALS (1 REASON)

<u>is of a quad</u>

Reason

<u>∠s of a quad</u>

- Properties of Quads Pg.127 Sharp Worksheet on Google Classroom
- 2.) Determine giving reasons x, y and z

1.) Classify the quadrilateral ABCD, giving reasons for you answer.

Diagonals are equal (Square or Rectangle) Opposite sides are equal ∴ It must be a rectangle

Properties of Quads Pg.127 Sharp Worksheet on Google Classroom

2.) Determine giving reasons *x*, *y* and *z*

 $x + 2x + 60^\circ = 90^\circ$ Adj Comp \angle 's or $3x = 90^\circ - 60^\circ$ Properties of a rect $3x = 30^\circ$ $x = 10^\circ$

1.) Classify the quadrilateral ABCD, giving reasons for you answer.

Diagonals are equal (Square or Rectangle) Opposite sides are equal ∴ It must be a rectangle

1.) Classify the quadrilateral ABCD, giving reasons for you answer.

Diagonals are equal (Square or Rectangle) Opposite sides are equal ∴ It must be a rectangle Properties of Quads Pg.127 Sharp Worksheet on Google Classroom

2.) Determine giving reasons *x*, *y* and *z*

 $x + 2x + 60^\circ = 90^\circ$ Adj Comp \angle 's or $3x = 90^\circ - 60^\circ$ Properties of a rect $3x = 30^\circ$ $x = 10^\circ$

 $y = x = 10^{\circ}$ $alt \angle s =; AD \parallel BC$

1.) Classify the quadrilateral ABCD, giving reasons for you answer.

Diagonals are equal (Square or Rectangle) Opposite sides are equal ∴ It must be a rectangle Properties of Quads Pg.127 Sharp Worksheet on Google Classroom

2.) Determine giving reasons *x*, *y* and *z*

$x + 2x + 60^\circ = 90^\circ$	Adj Comp ∠'s or
$3x = 90^\circ - 60^\circ$	Properties of a rect
$3x = 30^{\circ}$	
$x = 10^{\circ}$	

- $y = x = 10^{\circ} \qquad alt \angle s =; AD \parallel BC$
- $A\widehat{B}D = 80^{\circ} \qquad alt \angle s =; AB \parallel DC$

1.) Classify the quadrilateral ABCD, giving reasons for you answer.

Diagonals are equal (Square or Rectangle) Opposite sides are equal ∴ It must be a rectangle Properties of Quads Pg.127 Sharp Worksheet on Google Classroom

2.) Determine giving reasons *x*, *y* and *z*

$x + 2x + 60^\circ = 90^\circ$	Adj Comp ∠'s or
$3x = 90^\circ - 60^\circ$	Properties of a rect
$3x = 30^{\circ}$	
$x = 10^{\circ}$	

 $y = x = 10^{\circ}$ $alt \angle s =; AD \parallel BC$

```
A\widehat{B}D = 80^{\circ}alt \angle s =; AB \parallel DCB\widehat{A}C = 80^{\circ}\angle s \circ pp = sides80^{\circ} + 80^{\circ} + z = 180^{\circ}\angle s in a \Deltaz = 180^{\circ} - 80^{\circ} - 80^{\circ}z = 20^{\circ}
```

EXERCISE 13.2 Pg. 128 (No. 1,2,3)

EXERCISE 13.2 Pg. 128 (No. 1,2,3)

Solve for x and/or y where necessary and then classify each quadrilateral. Reasons must be given. Quarilaterals have not been drawn to scale.

PROPERTIES OF QUADRILATERALS

Remember these are not drawn to scale!

What do we know? All angles at vertices are bisected All angles are equal

What can we conclude?

ABCD is a square

What does it look like to scale?

What do we know? Diagonals intersect at 90° 1 Diagonal is Bisected

What can we conclude? EFGH is a Kite

What does it look like to scale?

Properties of Quads Pg.127 Or Sharp Worksheet on Google Classroom

What do we know? Diagonals intersect at 90° 2 Diagonals are Bisected

What can we conclude? JKLM is a rhombus

What does it look like to scale?

EXERCISE 13.4 Pg. 128 (No. 1d-i)

EXERCISE 13.4 Pg. 130 (No. 1 d,e,f,g,h,i)

Classify each quadrilateral and briefly justify your answer. The sketches are not drawn to scale

Properties of Quads Pg.127 Or Sharp Worksheet on Google Classroom

PROPERTIES OF QUADRILATERALS (Continued)

EXAMPLE:

a.) Classify quadrilateral ABCD, giving reasons. What do we know?

Angles are bisected and equal to 45° All diagonals are bisected and are equal

What can we conclude? ABCD is a square

b.) Calculate, giving reasons, x, y and z

Statement	Reason
$x = 90^{\circ}$	Prop of a square
	Diagonals intersect at 90°
$y = 45^{\circ}$	$alt \angle' s =; AB \parallel DC$
<i>z</i> = 90°	Prop of a square Vertices of a square = 90°

EXERCISE 13.5 Pg. 131 (No. 2ab)

- a.) Classify quadrilateral FGHI, giving reasons.
- b.) Calculate, giving reasons, *p*,*q*,*r*,*s* and *t*.