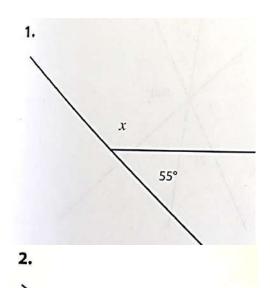
# GEOMETRY OF STRAIGHT LINES


Topic 10

**Exercise MEMOS** 

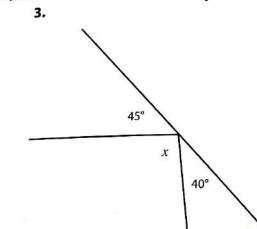


Topic 10

**Ex 10.1 MEMO** 



#### **Statement**


#### Reason

$$x + 55^{\circ} = 180^{\circ}$$
  
 $x = 180^{\circ} - 55^{\circ}$   
 $x = 125^{\circ}$ 

 $\angle$ 's on a str line

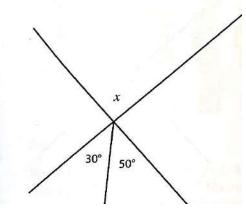
$$x = 95^{\circ}$$

 $Vert opp \angle's =$ 



$$45^{\circ} + x + 40^{\circ} = 180^{\circ}$$
  $\angle s$  on a str line  $x = 180^{\circ} - 45^{\circ} - 40^{\circ}$   $x = 95^{\circ}$ 

| 4. |   |    |  | Finds |
|----|---|----|--|-------|
|    |   |    |  |       |
|    |   |    |  | /     |
|    | ' | 2r |  |       |
|    |   | 1  |  |       |
|    |   | X  |  |       |


#### **Statement**

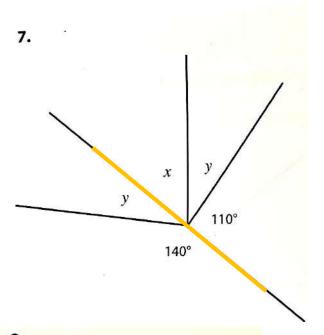
#### Reason

$$2x + 90^{\circ} = 180^{\circ}$$
  
 $2x = 180^{\circ} - 90^{\circ}$   
 $2x = 90^{\circ}$   
 $x = 45^{\circ}$ 

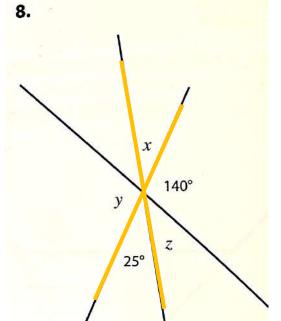
 $\angle$ 's on a str line






$$x = 30^{\circ} + 50^{\circ}$$
$$x = 80^{\circ}$$

 $Vert \ opp \ \angle' s =$ 


$$x + 70^{\circ} = 180^{\circ}$$
  
 $x = 180^{\circ} - 70^{\circ}$   
 $x = 110^{\circ}$ 

$$y + 10^{\circ} = 180^{\circ}$$
  
 $y = 180^{\circ} - 10^{\circ}$   
 $y = 170^{\circ}$ 

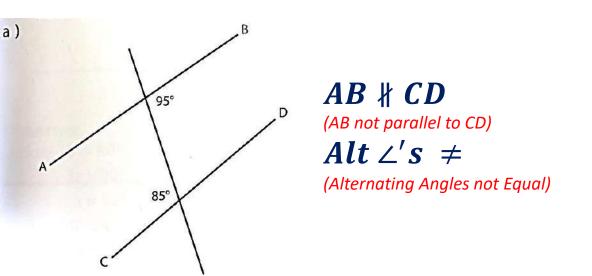
 $\angle$ 's on a str line

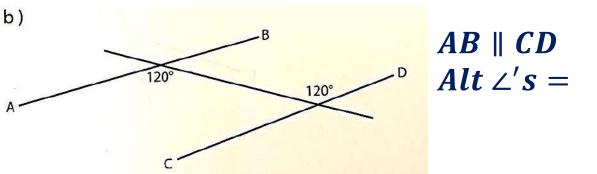


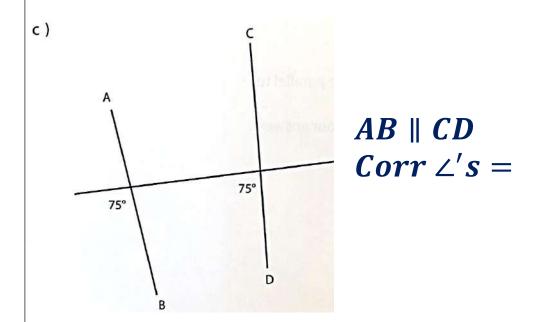
| Statement                                      | Reason            |
|------------------------------------------------|-------------------|
| $y + 140^{\circ} = 180^{\circ}$                | ∠'s on a str line |
| $y = 180^{\circ} - 140^{\circ}$                |                   |
| $y = 40^{\circ}$                               |                   |
|                                                | _                 |
| $x + y + 110^{\circ} = 180^{\circ}$            | ∠'s on a str line |
| $x + (40^{\circ}) + 110^{\circ} = 180^{\circ}$ |                   |
| $x = 180^{\circ} - 40^{\circ} - 110^{\circ}$   |                   |
| $r = 30^{\circ}$                               |                   |

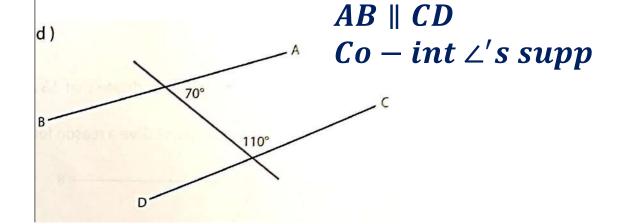


$$x = 25^{\circ}$$
  $Vert opp \angle's =$ 
 $y = 140^{\circ}$   $Vert opp \angle's =$ 
 $x + 140^{\circ} + z = 180^{\circ}$ 
 $(25^{\circ}) + 140^{\circ} + z = 180^{\circ}$ 
 $z = 180^{\circ} - 140^{\circ} - 25^{\circ}$ 
 $z = 15^{\circ}$ 





Topic 10

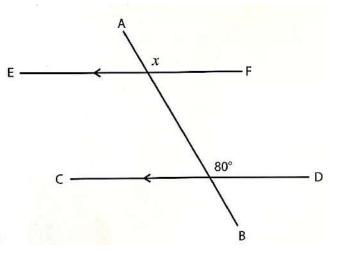

Ex 10.2 MEMO


## EXERCISE 10.2 Pg. 91

1. State whether lines AB and CD are parallel in the following diagrams, with reasons.



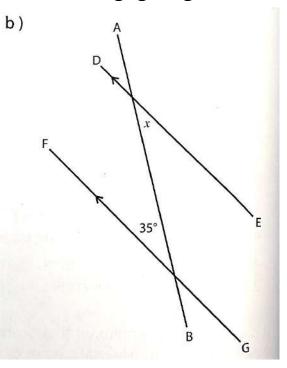






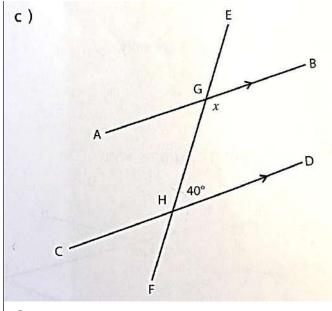

## EXERCISE 10.2 Pg. 91

2. Calculate the unknown angles in each of the following, giving reasons for all your statements






#### **Statement Reason**


 $x = 80^{\circ}$ 

 $Corr \angle' s = ; EF \parallel CD$ 

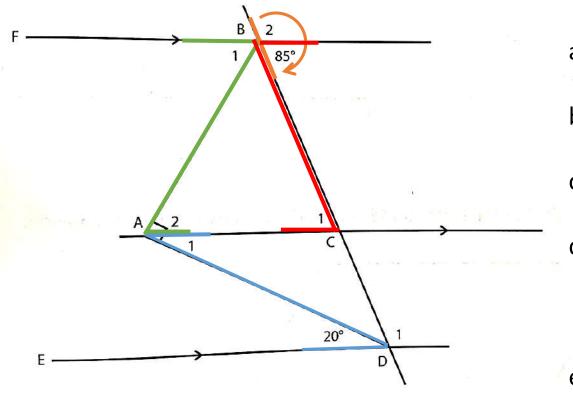


| Statement | Reason  |
|-----------|---------|
| <u> </u>  | 1100011 |

 $x = 35^{\circ}$  Alt  $\angle' s =$ ;  $DE \parallel FG$ 



Statement Reason


$$x + 40 = 180^{\circ}$$
 Co – int  $\angle$ 's supp;  $AB \parallel CD$   
 $x = 180^{\circ} - 40^{\circ}$   
 $x = 140^{\circ}$ 



Topic 10

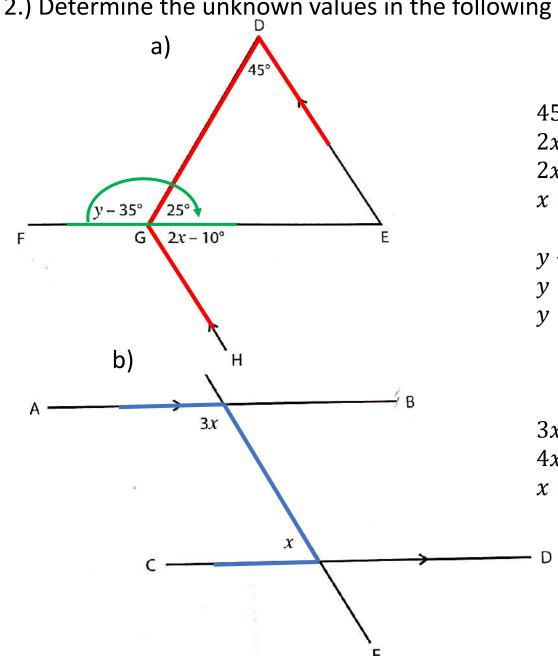
Ex 10.3 MEMO

## **EXERCISE 10.3 Pg. 95 (No. 1,2,3)**



a.) 
$$\hat{A}_1 = 20$$
  $Alt \angle' s = AC \parallel ED$ 

b.) 
$$\hat{A}_2 = 70$$
  $Adj\ Comp\ \angle's$  (Angles Add up to 90) c.)  $\hat{B}_1 = 70$   $Alt\angle's = AC \parallel FB$ 


d.) 
$$\hat{B}_2 + 85 = 180$$
  $\angle's \text{ on a str line}$   $\hat{B}_2 = 180 - 85$   $\hat{B}_2 = 95$ 

e.) 
$$\hat{C}_1 = 85$$
  $Alt \angle' s = AC \parallel FB$ 

f.) 
$$\widehat{D}_1 = 95$$
  $Co - int \angle' s supp; FB \parallel ED$ 

## EXERCISE 10.3 Pg. 95

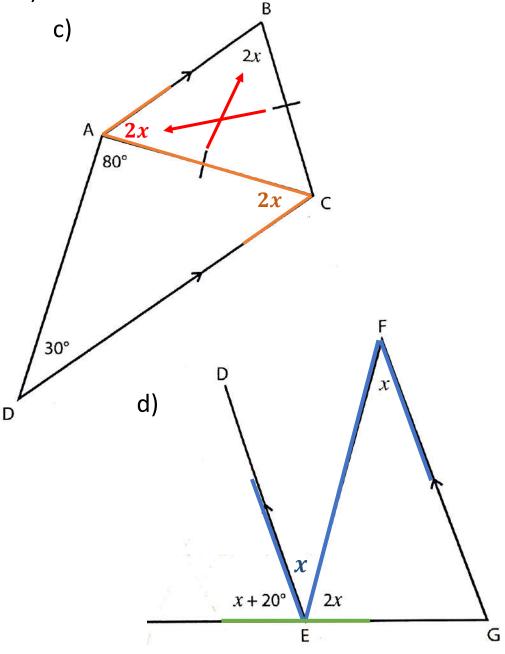
2.) Determine the unknown values in the following diagrams, giving reasons for your statements.



$$45^{\circ} + (25^{\circ} + 2x - 10^{\circ}) = 180^{\circ}$$
  $Co - int \angle's \ supp; GH \parallel DE$   
 $2x = 180^{\circ} - 45^{\circ} - 25^{\circ} + 10^{\circ}$   
 $2x = 120^{\circ}$   
 $x = 60^{\circ}$ 

$$y - 35^{\circ} + 25^{\circ} = 180^{\circ}$$
  
 $y = 180 + 35 - 25$   
 $y = 190$ 

$$3x + x = 180^{\circ}$$
$$4x = 180^{\circ}$$
$$x = 45^{\circ}$$


$$Co - int \angle' s \ supp; GH \parallel DE$$

∠'s on a str line

$$Co - int \angle' s \ supp; AB \parallel CD$$

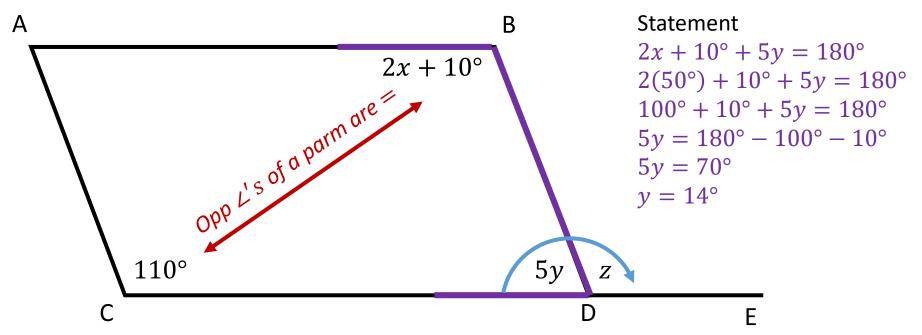
## EXERCISE 10.3 Pg. 95

2.) Determine the unknown values in the following diagrams, giving reasons for your statements.



$$B\hat{A}C = 2x$$
  $\angle$ 's opp = sides

$$A\hat{C}D = 2x$$
  $Alt \angle's = AB \parallel DC$ 


$$30^{\circ} + 80^{\circ} + 2x = 180^{\circ}$$
  $\angle sin a \Delta$   
 $2x = 180^{\circ} - 30^{\circ} - 80^{\circ}$   
 $2x = 70^{\circ}$   
 $x = 35^{\circ}$ 

$$D\widehat{E}F = x$$
  $Alt \angle' s = AB \parallel DC$ 

$$x + 20^{\circ} + x + 2x = 180^{\circ}$$
  $\angle$ 's on a str line  $4x + 20^{\circ} = 180^{\circ}$   $4x = 180^{\circ} - 20^{\circ}$   $4x = 160^{\circ}$   $x = 40^{\circ}$ 

### EXERCISE 10.3 Pg. 95

3.) Consider the parallelogram ABCD, and determine the values of x, y and z.



#### Reason

 $Co - int \angle's Supp; AB \parallel CD$ 

Statement

$$2x + 10^{\circ} = 110^{\circ}$$
$$2x = 110^{\circ} - 10^{\circ}$$
$$2x = 100^{\circ}$$
$$x = 50^{\circ}$$

Reason

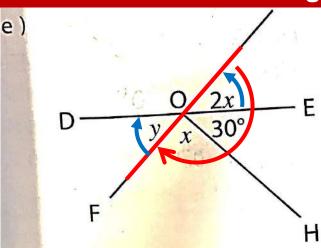
$$Opp \angle's of a parm are =$$

 $5y + z = 180^{\circ}$   $5(14^{\circ}) + z = 180^{\circ}$  $70^{\circ} + z = 180^{\circ}$ 

$$z = 180^{\circ} - 70^{\circ}$$

 $z = 110^{\circ}$ 

Statement


Reason

∠'s on a str line

# GEOMETRY OF STRAIGHT LINES

Topic 10

Rev Ex MEMO



#### <u>Statement</u>

$$2x + 30^{\circ} + x = 180^{\circ}$$

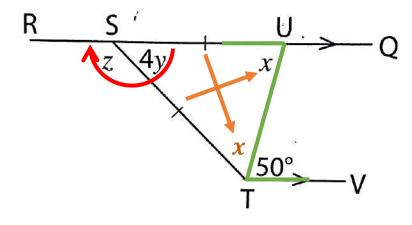
$$3x = 180^{\circ} - 30^{\circ}$$

$$3x = 150^{\circ}$$

$$x = 50^{\circ}$$

$$y = 2x$$

$$y = 2(50^{\circ})$$


$$y = 100^{\circ}$$

$$Vert\ Opp\ \angle's =$$

$$x + 15^{\circ} = 45^{\circ}$$
$$x = 45^{\circ} - 15^{\circ}$$
$$x = 30^{\circ}$$

$$Alt \angle' s = ; AB \parallel CD$$

$$g$$
)  $SU = ST$ 

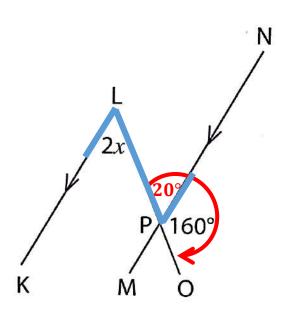


$$x = 50^{\circ}$$

#### Reason

$$Alt \angle' s = ; RQ \parallel TV$$

$$S\widehat{T}U = x = 50^{\circ}$$


$$\angle$$
's opp = sides

$$4y + x + x = 180^{\circ}$$
  $\angle 's \text{ in } a \Delta$   
 $4y + (50^{\circ}) + (50^{\circ}) = 180$   
 $4y + 100^{\circ} = 180^{\circ}$   
 $4y = 180^{\circ} - 100^{\circ}$   
 $4y = 80^{\circ}$   
 $y = 20^{\circ}$ 

$$z + 4y = 180^{\circ}$$
  
 $z + 4(20^{\circ}) = 180^{\circ}$   
 $z + 80^{\circ} = 180^{\circ}$   
 $z = 180^{\circ} - 80^{\circ}$   
 $z = 100^{\circ}$ 

∠'s on a str line

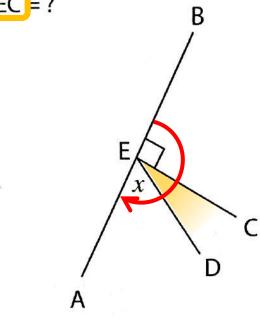




$$L\widehat{P}N + 160^{\circ} = 180^{\circ}$$

$$L\widehat{P}N = 180^{\circ} - 160^{\circ}$$

$$L\widehat{P}N = 20^{\circ}$$

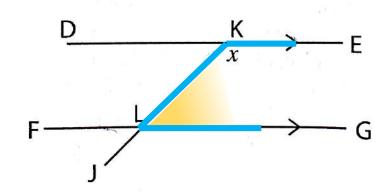

$$2x = 20^{\circ}$$

$$x = 10^{\circ}$$

$$Alt \angle' s = ; KL \parallel MN$$

**2.** Express each of the following in terms of *x*, reasons for all your statements.






Reason

$$x + D\hat{E}C + 90^{\circ} = 180^{\circ} \quad \angle's \text{ on a str line}$$

$$D\hat{E}C = 180^{\circ} - 90^{\circ} - x$$

$$D\hat{E}C = 90^{\circ} - x$$



$$G\widehat{L}K + x = 180^{\circ}$$

$$G\widehat{L}K = 180^{\circ} - x$$

$$Co - int \angle's = ; DE \parallel FG$$