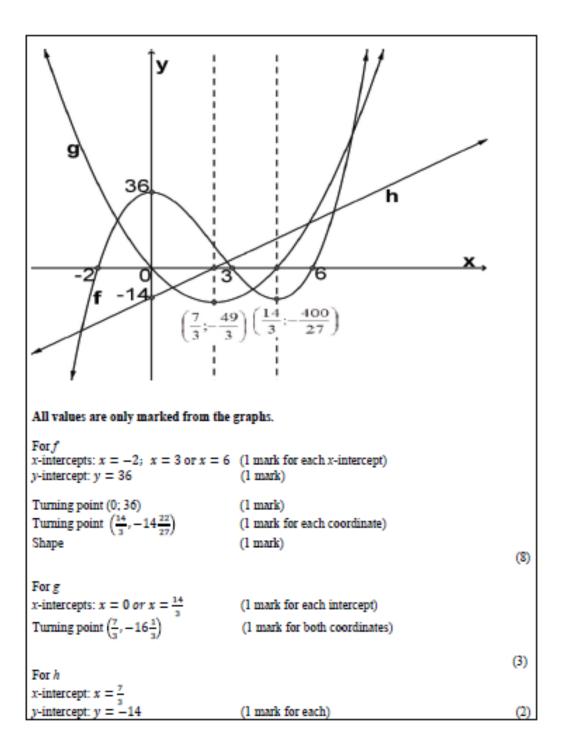
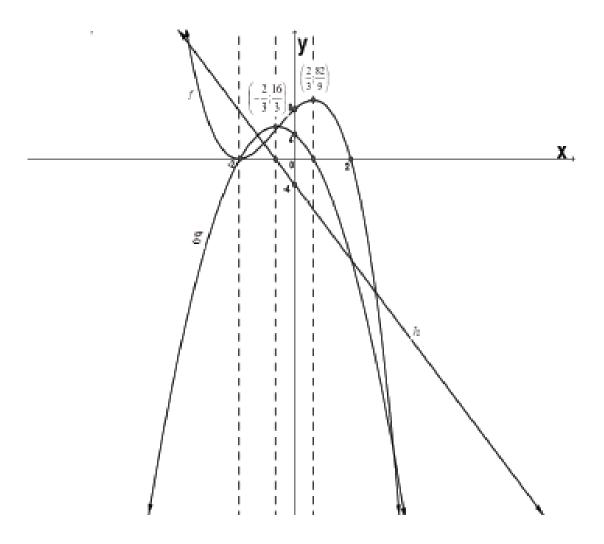
INFORMAL TEST 3


<u>MEMO</u>

3. INVESTIGATION 2

TOTAL: 50

MEMORANDUM: APPLICATIONS OF DIFFERENTIAL CALCULUS		
CASE 1		
$1 \cdot f(x) = x^3 - 7x^2 + 36$		
1.1 y-intercept = 36 for x-intercepts: $(x + 2)(x^2 - 9x + 18) = 0$ (x + 2)(x - 3)(x - 6) = 0	Marks are only awarded on the graph.	
x = -2 or x = 3 or x = 6 $\therefore \text{ coordinates of the x-intercepts are} (-2; 0), (3; 0) \text{ and } (6; 0)$		
For the turning points: $f'(x) = 3x^{2} - 14x$ $3x^{2} - 14x = 0$ $x(3x - 14) = 0$		
$x = 0 \text{ or } x = \frac{14}{3}$ $f(0) = 36$		
TP (0; 36) maximum		
$f\left(\frac{14}{3}\right) = \left(\frac{14}{3}\right)^3 - 7\left(\frac{14}{3}\right)^2 + 36$ $= -14\frac{22}{27}$		
$\left(\frac{14}{3}; -14\frac{22}{27}\right)$ minimum		
$\begin{array}{l} 1.2 \ f'(x) = 3x^2 - 14x \\ g(x) = 3x^2 - 14x \end{array}$	1 mark for the equation $g(x) = 3x^2 - 14\sqrt{3}$	
1.3 $g(x) = 3x^2 - 14x$ y-intercept = 0 For the x-intercepts:	Marks are only awarded on the graph.	
$3x^{2} - 14x = 0$ x(3x - 14) = 0 $x = 0 \text{ or } x = \frac{14}{3}$		
∴ coordinates of the x-intercepts are (0; 0) and $\left(\frac{14}{2}; 0\right)$		
For the turning point: g'(x) = 6x - 14		


OR	$6x - 14 = 0$ $x = \frac{14}{6}$ $x = \frac{7}{3}$ $x = \frac{-b}{2a}$	
	$x = \frac{-(-14)}{2(3)}$ $x = \frac{14}{6}$	
	$x = \frac{7}{3}$ $g\left(\frac{7}{3}\right) = 3\left(\frac{7}{3}\right)^2 - 14\left(\frac{7}{3}\right)$ $= \frac{-49}{3}$	
	$=\frac{-49}{3}$ TP $\left(2\frac{1}{3}; -16\frac{1}{3}\right)$	
1.4	$g(x) = 3x^{2} - 14x$ g'(x) = 6x - 14 h(x) = 6x - 14	l mark for the equation: $h(x) = 6x - 14\checkmark$
y-inter For the	cept = -14 e x-intercepts: $6x - 14 = 0$ $x = \frac{7}{3}$	

nemerica e e e e e e e e	
1.5 The x-intercepts of the quadratic function and the x-	1 mark for the statement√
coordinate of the turning point of the cubic are equal, i.e.	
$x = 0$ and $x = \frac{14}{3}$	
$x = 0$ and $x = \frac{1}{3}$	
	0
1.6 $60(-5) = C_{-1}$ 14	
1.6 $f''(x) = 6x - 14$	$f''(x) = 6x - 14\checkmark$
6x - 14 = 0	6x - 14 = 0
7	
$x = \frac{7}{3}$	Answer 🗸 (3)
OR	
	1.6
$r_{1} \perp r_{2} = 0 + \frac{14}{2}$	✓ formula
$\frac{x_1 + x_2}{2} = \frac{0 + \frac{14}{3}}{2}$	
2 2	✓ substitution
$=\frac{7}{2}$	✓ answer
= -	 allswei
1.7 The axis of symmetry of g, the x-intercept of h and the	✓ answer
point of inflection of f is	· MALE BY LE
· ·	
$x = \frac{7}{3}$	
* - 3	(1)
CASE 2	
2. $f(x) = -x^3 - 2x^2 + 4x + 8$ 2.1 y-intercept = 8	
for x-intercepts:	Marks are only awarded on the
$(x+2)(x^2-4)=0$	graph.
(x+2)(x-2)(x+2) = 0	01
(x + 2)(x - 2)(x + 2) = 0	
x = -2 or x = 2	
 coordinates of the x-intercepts are 	
(-2; 0) and (2; 0)	
(-, -, (-, -,	
For the turning points:	
$f'(x) = -3x^2 - 4x + 4$	
$-3x^2 - 4x + 4 = 0$	
$-3x^2 - 4x + 4 = 0$	
$-3x^2 - 4x + 4 = 0$ $3x^2 + 4x - 4 = 0$	
$-3x^2 - 4x + 4 = 0$ $3x^2 + 4x - 4 = 0$	
$-3x^2 - 4x + 4 = 0$	
$-3x^{2} - 4x + 4 = 0$ $3x^{2} + 4x - 4 = 0$ (3x - 2)(x + 2) = 0	
$-3x^2 - 4x + 4 = 0$ $3x^2 + 4x - 4 = 0$	
$-3x^{2} - 4x + 4 = 0$ $3x^{2} + 4x - 4 = 0$ (3x - 2)(x + 2) = 0	
$-3x^{2} - 4x + 4 = 0$ $3x^{2} + 4x - 4 = 0$ (3x - 2)(x + 2) = 0 $x = \frac{2}{3} \text{ or } x = -2$	
$-3x^{2} - 4x + 4 = 0$ $3x^{2} + 4x - 4 = 0$ (3x - 2)(x + 2) = 0 $x = \frac{2}{3} \text{ or } x = -2$ f(-2) = 0	
$-3x^{2} - 4x + 4 = 0$ $3x^{2} + 4x - 4 = 0$ (3x - 2)(x + 2) = 0 $x = \frac{2}{3} \text{ or } x = -2$	
$\begin{aligned} -3x^2 - 4x + 4 &= 0\\ 3x^2 + 4x - 4 &= 0\\ (3x - 2)(x + 2) &= 0\\ x &= \frac{2}{3} \text{or} x = -2\\ f(-2) &= 0\\ \text{TP}(-2; 0) \text{ minimum} \end{aligned}$	
$\begin{aligned} -3x^2 - 4x + 4 &= 0\\ 3x^2 + 4x - 4 &= 0\\ (3x - 2)(x + 2) &= 0\\ x &= \frac{2}{3} \text{or} x = -2\\ f(-2) &= 0\\ \text{TP}(-2; 0) \text{ minimum} \end{aligned}$	
$\begin{aligned} -3x^2 - 4x + 4 &= 0\\ 3x^2 + 4x - 4 &= 0\\ (3x - 2)(x + 2) &= 0\\ x &= \frac{2}{3} \text{or} x = -2\\ f(-2) &= 0\\ \text{TP}(-2; 0) \text{ minimum} \end{aligned}$	
$\begin{aligned} -3x^2 - 4x + 4 &= 0\\ 3x^2 + 4x - 4 &= 0\\ (3x - 2)(x + 2) &= 0\\ x &= \frac{2}{3} \text{or} x = -2\\ f(-2) &= 0\\ \text{TP}(-2; 0) \text{ minimum} \end{aligned}$	
$\begin{aligned} -3x^2 - 4x + 4 &= 0\\ 3x^2 + 4x - 4 &= 0\\ (3x - 2)(x + 2) &= 0\\ x &= \frac{2}{3} \text{or} x &= -2\\ f(-2) &= 0\\ \text{TP}(-2; 0) \text{ minimum} \end{aligned}$	
$\begin{aligned} -3x^2 - 4x + 4 &= 0\\ 3x^2 + 4x - 4 &= 0\\ (3x - 2)(x + 2) &= 0\\ x &= \frac{2}{3} \text{or} x &= -2\\ f(-2) &= 0 \end{aligned}$	
$\begin{aligned} -3x^2 - 4x + 4 &= 0\\ 3x^2 + 4x - 4 &= 0\\ (3x - 2)(x + 2) &= 0\\ x &= \frac{2}{3} \text{or} x = -2\\ f(-2) &= 0\\ \text{TP}(-2; 0) \text{ minimum} \end{aligned}$	
$f(-2; 0) = 0$ $f(-2; 0) = -\left(\frac{2}{3}\right)^3 - 2\left(\frac{2}{3}\right)^2 + 4\left(\frac{2}{3}\right) + 8$ $f(-2) = 0$ $f(-2; 0) = 0$	
$\begin{aligned} -3x^2 - 4x + 4 &= 0\\ 3x^2 + 4x - 4 &= 0\\ (3x - 2)(x + 2) &= 0\\ x &= \frac{2}{3} \text{or} x &= -2\\ f(-2) &= 0\\ \text{TP}(-2; 0) \text{ minimum} \end{aligned}$	

2.2 $f'(x) = -3x^2 - 4x + 4$	1 mark for equation of
$g(x) = -3x^2 - 4x + 4$	$g(x) = -3x^2 - 4x + 4 \checkmark$
$g(x) = -3x^2 - 4x + 4$ 2.3 y-intercept = 4	$g(x) = -3\dot{x}^2 - 4x + 4 \checkmark$ Marks are only awarded on the
x-intercept	graph.
$-3x^2 - 4x + 4 = 0$	
(3x-2)(x+2) = 0 $x = -2 \text{ or } x = \frac{2}{3}$	
$x = -2$ or $x = \frac{2}{-2}$	
TP 3	
g'(x) = -6x - 4	
g(x) = cx	
-6x - 4 = 0	
$x = \frac{-4}{\frac{6}{-2}}$ $x = \frac{-2}{3}$	
x - 6	
$x = \frac{-2}{-2}$	
3	
· 2· · · 2·2 · 2·	
$g\left(\frac{-2}{2}\right) = -3\left(\frac{-2}{2}\right)^2 - 4\left(\frac{-2}{2}\right) + 4$	
-(3) (3) (3)	
(-2) 1	
$g\left(\frac{-2}{3}\right) = 5\frac{1}{3}$	
TP $\left(\frac{-2}{3};\frac{16}{3}\right)$	
OR	
$x = \frac{-b}{2a}$	
$\frac{1}{2a}$	
(h)	
$x = \frac{-(-4)}{2(-3)}$	
2(-3)	
-2	
$x = \frac{-2}{3}$	
, i i i i i i i i i i i i i i i i i i i	
$g\left(\frac{-2}{3}\right) = -3\left(\frac{-2}{3}\right)^2 - 4\left(\frac{-2}{3}\right) + 4$	
$g(\frac{1}{3}) = -3(\frac{1}{3}) - 4(\frac{1}{3}) + 4$	
TP $\left(\frac{-2}{2};\frac{16}{2}\right)$	
2.4 $f''(x) = -6x - 4$	l mark only for equation
h(x) = -6x - 4	$h(x) = -6x - 4\sqrt{10}$ (1)
y-intercept = -4	Other marks are awarded on the
x-intercept $-6x - 4 = 0$ $x = \frac{-2}{3}$	graph.
$x = \frac{-2}{2}$	
	l mark for the statement√
2.5 The x-intercepts of the quadratic function and the x- coordinate of the turning points of the cubic are equal, i.e.	1 mark for the statement*
2	
$x = \frac{2}{3}$ and $x = -2$	(1)
, v	~~/

2.6 $f''(x) = -6x - 4 -6x - 4 = 0 -2$	$\begin{array}{l} f''(x) = -6x - 4 \\ -6x - 4 = 0 \end{array} \checkmark$	
$x = \frac{-2}{3}$	$x = \frac{-2}{3} \checkmark$	(3)
OR $\frac{x_1 + x_2}{2} = \frac{-2 + \frac{2}{3}}{2}$	 ✓ formula ✓ substitution ✓ answer 	
$=\frac{-2}{3}$		
2.7 The axis of symmetry of g, the x-intercept of h and the x- coordinate of the point of inflection of f are $x = \frac{-2}{3}$	✓ answer	
-		(1)
3. The point of inflection of the cubic function is the same as the axis of symmetry of the graph of the first derivative and also the x-intercept of the graph of the second derivative	✓ ✓ conclusion	(2)
4		
4.1.1 for increasing: x < 2 or $x > 4$	$\begin{array}{c} x < 2 \checkmark \\ x > 4 \checkmark \end{array}$	
		(2)
4.1.2 for decreasing: 2 < x < 4	For both values of $x \checkmark$ For correct inequality \checkmark	(2)
4.2 The x-values of the turning points x = 2 x = 4	x=2 ✓ x=4 ✓	(2)
4.3 x = 2 is the relative maximum since for f increasing x < 2 x = 4 is the relative minimum since for f increasing	$x = 2 \text{ maximum } \checkmark$ $x = 4 \text{ minimum } \checkmark$	
x>4		(2)

All values are only marked from the graphs.

2.1 For f

Each x-intercept 1 mark x = 2 and x = -2 $\checkmark \checkmark$ (2 marks)

y-intercept 1 mark y = 8

For the turning point (-2; 0) 1 mark 🗸

For the turning point (0, 67; 9, 11) or $\left(\frac{2}{3}; 9\frac{1}{9}\right)$ 1 mark for x-coordinate and

l mark for y-coordinate $\checkmark \checkmark (2 \text{ marks})$

Shape of the graph 1 mark ✓ (7)

2.3 For g

x-intercepts: $x = -2 \checkmark$ and $x = \frac{2}{3}\checkmark$	(1 mark for each)	
y-intercept: $y = 4$ 🗸	(1 mark)	
Turning point $\left(\frac{-2}{3}, 5\frac{1}{3}\right)$	(1 mark both coordinates)	(4)

2.4 For h

x-intercept: $x = \frac{-2}{3}$ 🗸	(1 mark)	
y-intercept: y = − 4 🗸	(1 mark)	(2)