INFORMAL TEST 3

INSTRUCTIONS

- Answer all the questions.
- Clearly show all calculations you have used in determining your answers.
- Round answers off to TWO decimal places, unless stated otherwise.
- Number your answers correctly according to the numbering system used in this
 question paper.
- 5. Write neatly and legibly.

OBJECTIVE: Investigating the point of inflection of a cubic graph and its relationship with the graphs of the first and the second derivatives.

CASE 1

Given: $f(x) = x^3 - 7x^2 + 36$

- 1.1 Draw the graph of f neatly on graph paper. Clearly indicate all intercepts and coordinates of turning points.
 (8)
- 1.2 Determine the first derivative of f, and name it g. (1)
- 1.3 Draw the graph of g on the same set of axes as f. Clearly show all intercepts and the turning point.
- 1.4 Determine the second derivative of f and name it h. Then sketch the graph of h on the same set of axes as f and g. Clearly show all intercepts of the graph with the axes
- 1.5 What do you notice regarding the x-intercepts of the quadratic function and the x-coordinates of the turning points of the cubic function?
- 1.6 The point of inflection can be determined by solving f"(x) = 0. It can also be determined by calculating the midpoint of the turning points of the cubic graph. Hence, determine the point of inflection of f.
- 1.7 What do you notice regarding the axis of symmetry of g, the x-intercept of h and the x-coordinate of the point of inflection of f?

[20]

CASE 2

Given: $f(x) = -x^3 - 2x^2 + 4x + 8$

- 2.1 Draw the graph of f neatly on graph paper. Clearly indicate all intercepts and coordinates of turning points.
 (7)
- Determine the first derivative of f, and name it g.
- 2.3 Draw the graph of g on the same set of axes as f, and clearly show all intercepts and the turning point. (4)
- 2.4 Determine the second derivative of f and name it h, then sketch the graph of h on the same set of axes as f and g. Clearly show all intercepts of the graph with the axes.
- 2.5 What do you notice regarding the x-intercepts of the quadratic function and the (1)

- x-coordinates of the turning points of the cubic function?
- 2.6 The point of inflection can be determined by solving f''(x) = 0. It can also be determined by calculating the midpoint of the turning points of the cubic graph. Hence, determine the point of inflection of f.
- 2.7 What do you notice regarding the axis of symmetry of g, the x-intercept of h and (1) the x-coordinate of the point of inflection of f?

[20]

(3)

3. CONCLUSION

Based on the two cases, what conclusion can you draw about the point of inflection of a cubic function in relation to the graphs of the first and second derivatives?

[2]

4. APPLICATION

The parabola shown below is the graph of the derivative of a function f.

4.1 For what value(s) of x is f:

4.1.1 Increasing (2)4.1.2 Decreasing (2)

4.2 Give the abscissae of the turning point(s) of y = f(x).

4.3 Classify the stationary point(s).

TOTAL: