Theorem 1

Theorem 2

The perpendicular bisector of a chord contains the centre of the circle

Statement	Reason
In ΔCAD and ΔCBD,	
AD = DB	Given
∠CDA = ∠CDB	CD ⊥to AB
CD = CD	Reflexive proerty
ΔCDA and ΔCDB	SAS
CA = CB	Congruent triangle

CA = CB Congruent triangles
Q is center of circle The center of the circle is the only point

within the circle that has points on the circumference

equal distance from it.

Proof:

In Δ OAB and Δ OCB

- (i) OA = OC [radii]
- (ii) OB = OB [common]
- (iii) $\hat{B}_1 = \hat{B}_2 = 90^{\circ}$ [given; OB \perp AC]

∴ \triangle OAB = \triangle OCB [hyp; 90° \angle ;side] AB = BC [from congruency]

Theorem 3

The angle subtended by an arc at the centre of a circle is double the size of the angle subtended by the same arc at the circle (on the same side of the chord as the centre).

∠ at centre = 2 ×∠ at circumference

Given: Circle with centre O and arc AB subtended \hat{AOB} at the centre and \hat{ACB} on the

To Prove: $\hat{BOC} = 2\hat{BAC}$

Construction: Draw AO extended.

Proof: 0

In diagram B :

 $\hat{O}_2 - \hat{O}_1 = 2(\hat{C}_2 - \hat{C}_1)$

 $A\hat{O}B = 2A\hat{C}B$

Hint: ext ∠ of Δ isosceles Δ

Theorem 4

To Prove that angles subtended by an arc or chord in the same segment are equal.

To prove that angle CAB = angle BDC

- •With centre of circle O draw lines OB and OC.
- ·Angle COB = 2 x angle CAB (Theorem 1).
- ·Angle COB = 2 x angle BDC (Theorem 1).
- \cdot 2 x angle CAB = 2 x angle BDC
- · Angle CAB = angle BDC

Theorem 5

To prove that the opposite angles of a cyclic quadrilateral are supplementary (Sum to 180°).

Theorem 5

To prove that angles A + C and $B + D = 180^{\circ}$

- ·Draw straight lines AC and BD
- •Chord DC subtends equal angles α (same segment) •Chord AD subtends equal angles β (same segment)
- •Chord AB subtends equal angles γ (same segment)
- •Chord BC subtends equal angles δ (same segment)
- •2($\alpha + \beta + \gamma + \delta$) = 360° (Angle sum quadrilateral)
- •α + β + γ + δ = 180°

Angles A + C and B + D = 1800 QED

 α β γ δ alpha beta gamma delta

Theorem 6

To prove that the two tangents drawn from a point outside a circle are of equal length.

To prove that AP = BP.

- •With centre of circle at O, draw straight lines OA and OB.
- •OA = OB (radii of the same circle)
- ·Angle PAO = PBO = 90° (tangent radius).
- ·Draw straight line OP.
- •In triangles OBP and OAP, OA = OB and OF is common to both.
- ·Triangles OBP and OAP are congruent (RHS
- •Therefore AP = BP. QED

Theorem 7

To prove that the angle between a tangent and a chord through the point of contact is equal to the angle subtended by the chord in the alternate segment.

В

To prove that angle BTD = angle TCD

- •With centre of circle O, draw straight lines OD and OT.
- ·Let angle DTB be denoted by α .
- •Then angle DTO = 90 α (Theorem 4 tan/rad)
- •Also angle TDO = 90 α (Isos triangle)
- •Therefore angle TOD = 180 -(90 α + 90 α)
- = 2α (angle sum triangle)
- •Angle TCD = α (Theorem 1 angle at the centre)
- •Angle BTD = angle TCD QED