

GEOMETRY GR 11 THEOREMS FOR GRADE 11 and GRADE 12 – PART 4 THEOREM 7

Understand what is being asked in Theorem 7:

Angle between a tangent and a chord at the point of contact is equal to the angle subtended by the chord in the alternate segment.

To prove that $B\hat{T}D=T\hat{C}D$

 $B\hat{T}D$ is the angle between the tangent ATB and Chord TD.

 $T\hat{C}D$ is the angle that chord DT makes in the alternate segment at circumference

REMEMBER THAT A CHORD DIVIDES A CIRCLE INTO TWO SEGMENTS. SO $T\hat{C}D$ IS IN AN ALTERNATE SEGMENT TO $B\hat{T}D$

Examples for Theorem 7:

Angle between a tangent and a chord at the point of contact is equal to the angle subtended by the chord in the alternate segment.

Tan-Chord Theorem is the reason used in an application when applying Theorem 7.

Angle between a tangent and a chord at the point of contact is equal to the angle subtended by the chord in the alternate segment.

Examples- Applications

Find the missing angles below giving reasons in each case.

Example 1- Applications PAST PAPER QUESTIONS

QUESTION 9

9.1 In the figure, O is the centre of the circle. A, B, C, D and E lie on the circle such that chord AB and chord DC are equal in length and $A\hat{E}B = 39^{\circ}$.

NOTE: DC = AB which means that $\hat{O}_1 = \hat{O}_2$ BECAUSE OF **EQUAL CHORDS SUBTENDS EQUAL ANGLES.**

DO NOT USE VERTICALLY OPPOSITE ANGLES BECAUSE DOB and AOC ARE NOT STRAIGHT LINES

9.1.1 Determine the size of \hat{O}_1 .(2)9.1.2 Determine the size of \hat{O}_2 .(2)

Answer to Example1- Applications PAST PAPER QUESTIONS

Example 2- Applications PAST PAPER QUESTIONS

9.2 In the diagram, S is the centre of circle PQRT. PT is a diameter, RST = $x - 8^{\circ}$ and PQR = $2x - 40^{\circ}$.

Determine the value of x.

Answer to Example 2- Applications PAST PAPER QUESTIONS

] г		
		REFLEX ANGLE R <i>ŜT</i> is used in this answer		OR/OF Join T and R/ verbind T en R $\hat{T} = 180^{\circ} - (2x - 40^{\circ}) \begin{bmatrix} \text{opp } \angle s \text{ of cyclic quad} \\ \text{teenoorst.} \angle e \text{ van koordevierhoek} \end{bmatrix}$ $\hat{R} = \hat{T} = 220^{\circ} - 2x \begin{bmatrix} \angle s \text{ opp.} = \text{sides} / \angle e \text{ teeoor gelyke sye} \end{bmatrix}$ $x - 8^{\circ} + 220^{\circ} - 2x + 220^{\circ} - 2x = 180^{\circ} \begin{bmatrix} \text{sum of int } \angle s \text{ of } \Delta \\ \text{som binne } \angle e \text{ van } \Delta \end{bmatrix}$ $-3x = -252^{\circ}$ $x = 84^{\circ}$	√ S √ R √ S √ answer/ antwoord
9.2	$x - 8^{\circ} + 180^{\circ} = 2(2x - 40^{\circ}) \begin{bmatrix} \text{angle at centre} = 2 \times \angle \text{ at circumference}/\\ middelpunt shoek = 2 \times omtrekshoek \\ 4x - 80^{\circ} = 172^{\circ} + x \\ 3x = 252^{\circ} \\ x = 84^{\circ} \end{bmatrix}$	 ✓ S ✓ R ✓ simplification/ vereenvoudiging ✓ answer/ 			

Example 3- Applications PAST PAPER QUESTIONS

9.3 In the diagram, O is the centre of the circle. Chord AC is perpendicular to radius OD at B. OB = 2x units and AC = 8x units.

Show that the length of BD is $2x(\sqrt{5}-1)$ units.

Answer to Example 3- Applications PAST PAPER QUESTIONS

Example 4- Applications PAST PAPER QUESTIONS

QUESTION 10

10.1 In the diagram below, O is the centre of the circle and PTSR is a cyclic quadrilateral.

This is a Theorem that you need to know. Opposite angles of a Cyclic Quad are supplementary

(5)

Prove the theorem that states that $\hat{P} + \hat{S} = 180^{\circ}$.

First possible Answer to Example 4- Applications PAST PAPER QUESTIONS

Opposite angles of cyclic quad are supplementary (adds up to 180°) Given: Cyclic Quad PRST Proof *Construction:* Draw PS and RT USING CHORD ST $S\hat{P}T = S\hat{R}T = \alpha$ (angle subtended by same chord or arc) **USING CHORD RS** $R\hat{T}S = R\hat{P}S = \beta$ (angle subtended by same chord or arc) USING CHORD PR $R\hat{T}P = P\hat{S}R = \gamma$ (angle subtended by same chord or arc) USING CHORD PT $P\hat{S}T = P\hat{R}T = \delta$ (angle subtended by same chord or arc) $S\hat{P}T + S\hat{R}T + R\hat{T}S + R\hat{P}S + R\hat{T}P + P\hat{S}R + P\hat{S}T + P\hat{R}T = 360^{\circ}$ (Angles of Quad = 360°) $\alpha + \alpha + \beta + \beta + \gamma + \gamma + \delta + \delta = 360^{\circ}$ $2\alpha + 2\beta + 2\gamma + 2\delta = 360^{\circ}$ $2(\alpha + \beta + \gamma + \delta) = 360^{\circ}$ $\alpha + \beta + \gamma + \delta = 180^{\circ}$ $\therefore P\hat{R}S + P\hat{T}S = 180^{\circ}$ and $R\hat{P}T + R\hat{S}T = 180^{\circ}$ $\therefore \widehat{P} + \widehat{S} = 180^{\circ}$

Second possible Answer to Example 4- Applications PAST PAPER QUESTIONS

This is an alternate answer to the one that you learnt.

.1	Construction: Draw radii OR and OT	✓ construction/
	Let $\hat{\mathbf{S}} = x$ and $\hat{\mathbf{P}} = y$	
	$\hat{O}_1 = 2\hat{S}$ angle at centre = 2 times angle at circumference/	✓S ✓ R
	$\hat{O}_1 = 2x$	
	Similarly/ $\hat{O}_2 = 2y$	✓ S
	$2x + 2y = 360^{\circ}$ [anlges around point $x + y = 180^{\circ}$	✓ S/R
	$\therefore \hat{S} + \hat{P} = 180^{\circ}$	

Example 5- Applications PAST PAPER QUESTIONS

10.2 In the figure, QS and PR are diameters of the circle with centre O such that $PQ \mid \mid SR$. PS is produced to T. N is a point on the circle such that $\hat{Q}_1 = \hat{Q}_2$. SN is drawn.

RS intersects QN at M. $\hat{S}_1 = 48^{\circ}$

Answer to Example 5- Applications PAST PAPER QUESTIONS

SOMETHING TO NOTE: Exterior Angle of a Cyclic is Equal to the interior opposite angle. Example on left $r = 135^{\circ}$. This is used in 10.2.1 (a)

10.2.1(a)	$\hat{Q}\!=\!\hat{S}_{i}\!=\!48^{o}$	ext∠of cyclic quad/ buite∠van 'n koodervierhoek	✓S✓R
	$\hat{Q}_1 = \hat{Q}_2 = 24^{\circ}$	[QS bisects/ halveer PQN]	≺ s
10.2.1(b)	$\hat{R} = \hat{Q}_1 = 24^{\circ}$	\angle^{*} in the same segment/ in dieselfde segment	✓S✓R
10.2.1(c)	$\hat{M}_1 = \hat{Q} = 48^{\circ} $	[corresp/ ooreenkomst ∠ [*] , PQ SR]	✓S✓R

10.2.2	$\hat{M}_{1} = \hat{S}_{1} = 48^{\circ}$	√ S
	.: ST is a tangent to circle MNS.[converse tan-chord theorem]	
	. ST is 'n raaklyn aan MNS [omgekrd raaklyn-koord st.]	