GEOMETRY GR 11
THEOREMS FOR GRADE 11 and GRADE 12-PART 4 THEOREM 7

Understand what is being asked in Theorem 7:
Angle between a tangent and a chord at the point of contact is equal to the angle subtended by the chord in the alternate segment.

To prove that $B \hat{T} D=T \hat{C} D$

Theorem 7:

Angle between a tangent and a chord at the point of contact is equal to the angle subtended by the chord in the alternate segment.

To prove that $\mathrm{B} \hat{T} \mathrm{D}=\mathrm{T} \hat{C} \mathrm{D}$

Examples for Theorem 7:

Angle between a tangent and a chord at the point of contact is equal to the angle subtended by the chord in the alternate segment.

To prove that $D \quad B \quad \hat{T} D=35^{\circ}$, What is the value of $\bar{C} T$

c

Tan-Chord Theorem is the reason used in an application when applying Theorem 7.
Angle between a tangent and a chord at the point of contact is equal to the angle subtended by the chord in the alternate segment.

Examples- Applications

Find the missing angles below giving reasons in each case.

QUESTION 9

9.1 In the figure, O is the centre of the circle. $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ and E lie on the circle such that chord AB and chord DC are equal in length and $\mathrm{AEB}=39^{\circ}$.

NOTE:

$D C=A B$ which means that $\hat{O}_{1}=\hat{O}_{2}$ BECAUSE OF EQUAL CHORDS SUBTENDS EQUAL ANGLES.

DO NOT USE

VERTICALLY OPPOSITE ANGLES BECAUSE DOB and AOC ARE NOT STRAIGHT LINES
9.1.1 Determine the size of $\hat{\mathrm{O}}_{1}$.
9.1.2 Determine the size of $\hat{\mathrm{O}}_{2}$
(2)
(2)

Answer to Example1- Applications PAST PAPER QUESTIONS

QUESTION/VRAAG 9

9.1 .1	$\hat{\mathrm{O}}_{1}=78^{\circ}$ [angle at centre $=2 \times \angle$ at circumference] [middelpuntshoek $=2 \times$ omtrekshoek]	$\checkmark \mathrm{S} \checkmark \mathrm{R}$
9.1 .2	$\hat{\mathrm{O}}_{2}=78^{\circ} \quad$ [equal chords; equal $\angle^{3} /$ gelyke koorde; gelyke hoeke]	$\checkmark \mathrm{S} \checkmark \mathrm{R}$

Example 2- Applications PAST PAPER QUESTIONS

9.2 In the diagram, S is the centre of circle PQRT . PT is a diameter. $\hat{\mathrm{RST}}=x-8^{\circ}$ and $\mathrm{PQR}=2 x-40^{\circ}$.

Determine the value of x.

Answer to Example 2- Applications PAST PAPER QUESTIONS

9.2	$x-8^{\circ}+180^{\circ}=2\left(2 x-40^{\circ}\right)$	$\left[\begin{array}{l}\text { angle at centre }=2 \times \angle \text { at circumference/ } \\ \text { middelpuntshoek }=2 \times \text { omtrekshoek }\end{array}\right.$
$4 x-80^{\circ}=172^{\circ}+x$ $\checkmark \mathrm{~S} \checkmark \mathrm{R}$ $3 x=252^{\circ}$ $x=84^{\circ}$	\checkmark simplification/	
	vereenvoudiging	
	\checkmark answer/	

Example 3- Applications PAST PAPER QUESTIONS

9.3 In the diagram, O is the centre of the circle. Chord AC is perpendicular to radius OD at B . $\mathrm{OB}=2 x$ units and $\mathrm{AC}=8 x$ units.

Show that the length of BD is $2 x(\sqrt{5}-1)$ units.

Answer to Example 3- Applications PAST PAPER QUESTIONS

QUESTION 10

10.1 In the diagram below, O is the centre of the circle and PTSR is a cyclic quadrilateral.

This is a Theorem that you need to know. Opposite angles of a Cyclic Quad are supplementary

α	β	γ	δ
alpha	beta	gamma	delta

Second possible Answer to Example 4- Applications PAST PAPER QUESTIONS

This is an alternate answer to the one that you learnt.

10.1	Construction: Draw radii OR and OT $\text { Let } \hat{\mathrm{S}}=x \text { and } \quad \hat{\mathrm{P}}=y$ $\hat{\mathrm{O}}_{1}=2 \hat{\mathrm{~S}} \quad[\text { angle at centre }=2 \text { times angle at circumference/ }]$ $\hat{\mathrm{O}}_{1}=2 x$ Similarly/ $\hat{\mathrm{O}}_{2}=2 y$ $2 x+2 y=360^{\circ}$ [anlges around point $x+y=180^{\circ}$ $\therefore \hat{\mathrm{S}}+\hat{\mathrm{P}}=180^{\circ}$	construction $\checkmark \mathrm{S} \quad \vee \mathrm{R}$ \checkmark S $\checkmark \mathrm{S} / \mathrm{R}$

Example 5- Applications PAST PAPER QUESTIONS

10.2 In the figure, QS and PR are diameters of the circle with centre 0 such that $\mathrm{PQ} \| \mathrm{SR} . \mathrm{PS}$ is produced to $\mathrm{T} . \mathrm{N}$ is a point on the circle such that $\hat{Q}_{1}=\hat{Q}_{2}$.
SN is drawn.
RS intersects QN at M. $\hat{\mathrm{S}}_{1}=48^{\circ}$
10.2.1 Determine, with reasons, the size of:
(a) $\hat{\mathrm{Q}}_{1}$
(3)
(b) $\quad{ }^{\mathrm{R}}$
(2)
(c) $\quad \hat{M}_{1}$
(2)

Prove that ST is a tangent to the circle passing through M, N and S .
(2)

Answer to Example 5- Applications PAST PAPER QUESTIONS

SOMETHING TO NOTE:

Exterior Angle of a Cyclic is Equal to
the interior opposite angle.
Example on left $\mathrm{r}=135^{\circ}$.
This is used in 10.2.1 (a)

10.2.1(a)	$\begin{gathered} \mathrm{Q}=\mathrm{B}_{1}=4 \mathrm{~B}^{+} \\ \mathrm{Q}_{1}=\hat{\mathrm{Q}}_{2}=24 \end{gathered}$	$\left[\begin{array}{l} \text { cat } \angle \text { of oyclicquadi' } \\ \text { Gume } \angle \text { pon 'n hoodervierhoek } \end{array}\right]$ [QS bisects/ halueer PQN]	$7 \mathrm{~S} / \mathrm{R}$ $\% \mathrm{~s}$

102π		/ $/ \mathrm{P}$
102.11(c)		/ S / R

1022	$\hat{\mathrm{M}}_{1}=\mathrm{S}_{1}=4 \mathrm{~s}^{\circ}$.STisaltangent tocircle MNS . [oonverse tan-chord theorem] 	78 78

