GEOMETRY GR 11
THEOREMS FOR GRADE 11 and GRADE 12 -PART 2 THEOREM 4 and 5

The angle in a semi-circle is a right angle.

Theorem 4 - Angles subtended by a chord of the circle, on the same side of the chord, are equal.

To Prove that angles subtended by an arc or chord in the same segment are equal.	Use of angle at centre $=2 \times$ angle at circumference to prove this theorem

Theorem 4 Examples

Angles subtended by an arc or chord in the same segment are equal.

Red lines are the chords. The chords come together at points on circumference. These angles will be equal.

Theorem 4

 ExamplesAngles subtended by an arc or chord in the same segment are equal.

Find the unknown angles in each case

Theorem 4 Examples

Angles subtended by a chord of the same length in the same segment are equal. (Special case of theorem 4)

Find the unknown angle

If the chords are equal in length and subtend angles at the circumference, those angles are equal.

IT IS A SPECIAL CASE OF THE THEOREM 4.
Angle subtended by same chord or arc.

IMPORTANT TO REMEMBER THIS SPECIAL CASE
$=38^{\circ}$ (angles subtended by equal chords)

Theorem 5

α	β	γ	δ
alpha	beta	gamma	delta

Opposite angles of cyclic quad are supplementary (adds up to $18 \mathbf{1 0}^{\circ}$) Given: Cyclic Quad ABCD
 Proof
 Construction: Draw BD and AC
 USING CHORD DC
 $D \hat{B} C=D \hat{A} C=\alpha$ (angle subtended by same chord or arc)
 USING CHORD AD
 $\mathrm{A} \hat{B} D=\mathrm{A} \hat{C} D=\beta$ (angle subtended by same chord or arc)
 USING CHORD AB
 $B \widehat{D} A=\mathrm{B} \hat{C} A=\gamma$ (angle subtended by same chord or arc)
 USING CHORD BC
 $B \hat{A} C=\mathrm{B} \widehat{D} C=\delta$ (angle subtended by same chord or arc)
 $D \hat{B} C+D \hat{A} C+A \hat{B} D+A \hat{C} D+B \widehat{D} A+B \hat{C} A+B \hat{A} C+B \widehat{D} C=360^{\circ} \quad\left(\right.$ Angles of Quad $\left.=360^{\circ}\right)$
 $\alpha+\alpha+\beta+\beta+\gamma+\gamma+\delta+\delta=360^{\circ}$
 $2 \alpha+2 \beta+2 \gamma+2 \delta=360^{\circ}$
 $2(\alpha+\beta+\gamma+\delta)=360^{\circ}$
 $\alpha+\beta+\gamma+\delta=180^{\circ}$
 $\therefore B \hat{A} D+B \hat{C} D=180^{\circ}$ and $A \hat{B} C+A \widehat{D} C=180^{\circ}$

$(\sqrt{ }$
A cyclic quadrilateral is a quadrilateral whose vertices all lie on a single circle

Theorem 5 Examples Cyclic Quadrilateral Theorem.

The opposite angles of a cyclic quadrilateral are supplementary. (They sum to 180°)

Angles $y+w=180^{\circ}$ (Opp angles of Cyclic Quad Supp.)
Angles $p+r=180^{\circ}$ (Opp angles of Cyclic Quad Supp.)
Angles $x+z=180^{\circ}$ (Opp angles of Cyclic Quad Supp.)

