

# GEOMETRY GR 11 THEOREMS FOR GRADE 11 and GRADE 12-PART 1



### THEOREM 1

#### -STATEMENT OF THEOREM



## Example of an application

### Find length OS



OP = 3cm (Given) ST = 8cm (Given) OP  $\perp$  ST (Given) SP = 4cm = PT (Line from centre O  $\perp$ chord ST) USING PYTHAGORUS YOU CAN NOW WORK OUT OS.  $OS^2 = OP^2 + SP^2$   $OS^2 = 3^2 + 4^2$   $OS^2 = 9 + 16$   $OS^2 = 25$ OS = 5

NOTE THAT YOU DO NOT PROVE THE THEREOM IN THIS EXAMPLE BECAUSE THE QUESTION WAS ASKING TO WORK OUT A SIDE. WE USE THE THEOREM TO HELP US WORK OUT THE SIDE, THAT IS WHY THE REASON IS INDICATED.

**SP = 4cm = PT** (Line from centre O  $\perp$  chord ST) This is an application of the theorem.

### Theorem 2

#### STATEMENT OF THEOREM



# Example of an application

- 1. Is O the centre of circle below?
- 2. Determine angle x.



In  $\triangle$  SOT and  $\triangle$  UOT 1. OT = OT (Given) 2.  $S\hat{T}O = U\hat{T}O$  (Given) 3. TS = TU (Given)  $\therefore \triangle$  SOT  $\equiv \triangle$  UOT (SAS) SO = UO (Congruency)  $\therefore$  0 is the centre of the circle.

2.  $S\hat{O}T = 22^{0} \quad (\triangle SOT \equiv \triangle UOT)$   $90^{0} + 22^{0} + x = 180^{0}$  (Angles of  $\triangle$  SOT supplementary)  $\therefore x = 68^{0}$ 





# Example of Angle at Centre and Angle at Circumference. 2x is at centre and x is at centre.





The angle subtended by an arc at the centre of a circle is double the size of the angle subtended by the same arc at the circle (on the same side of the chord as the centre).

#### ∠ at centre = 2 ×∠ at circumference

*Given*: Circle with centre O and arc AB subtended  $\hat{AOB}$  at the centre and  $\hat{ACB}$  on the circumference. To Prove:  $\hat{BOC} = 2\hat{BAC}$ 

Construction: Draw AO extended.



#### STATEMENT OF THEOREM

This Proof has three different diagrams that could be given- maybe all or maybe one or two.

Proof is the same for all three diagrams up to a point.

For Diagram A and C

For Diagram B

This is used when you do applications of the theorem as a reason

#### Example Application Questions

Find the unknown angles giving reasons for your answers.



### Example Application Questions

Find the unknown angles giving reasons for your answers.



3.  $0\widehat{A}B = 42^{\circ}$  (OA = OB RADIUS - ANGLES OPP EQUAL SIDES)  $x + O\widehat{A}B + O\widehat{B}A = 180^{\circ}$  (ANGLES OF TRIANGLE SUPPLEMENTARY  $x + 42^{\circ} + 42^{\circ} = 180^{\circ}$   $x = 96^{\circ}$  $y = 48^{\circ}$  (Angle at the centre = 2 x angle at circum).



4.  $p = 124^{\circ}$  (Angle at the centre = 2 x angle at circum).

```
O\widehat{A} B = q = O\widehat{B} A (OA = OB RADIUS - ANGLES OPP EQUAL SIDES)

124^{0} + q + q = 180^{0} (ANGLES OF TRIANGLE SUPPLEMENTARY

124^{0} + 2q = 180^{0}

q=(180 - 124) \div 2

\therefore q = 28^{0}
```