GEOMETRY GR 11
THEOREMS FOR GRADE 11 and GRADE 12 -PART 1

Example of an application

Find length OS

$\mathrm{OP}=3 \mathrm{~cm} \quad$ (Given)
ST $=8 \mathrm{~cm} \quad$ (Given)
$O P \perp S T \quad$ (Given)
$S P=4 \mathrm{~cm}=P T \quad$ (Line from centre $O \perp$ chord $S T$) USING PYTHAGORUS YOU CAN NOW WORK OUT OS.

$$
\begin{gathered}
O S^{2}=O P^{2}+S P^{2} \\
O S^{2}=3^{2}+4^{2} \\
O S^{2}=9+16 \\
O S^{2}=25 \\
O S=5
\end{gathered}
$$

NOTE THAT YOU DO NOT PROVE THE THEREOM IN THIS EXAMPLE BECAUSE THE QUESTION WAS ASKING TO WORK OUT A SIDE. WE USE THE THEOREM TO HELP US WORK OUT THE SIDE, THAT IS WHY THE REASON IS INDICATED.
SP = 4cm = PT \quad (Line from centre $O \perp$ chord $S T$) This is an application of the theorem.

Theorem 2

The perpendicular bisector of a chord passes through the centre of the circle

D

The perpendicular bisector of a chord contains the centre of the circle
This theorem needs to learnt "off by heart". If the Question asks you to prove the theorem, this is the proof.

REMEMBER THE
CONSTRUCTIONS.

Statement
In $\triangle C A D$ and $\triangle C B D$,
$A D=D B$
$\angle C D A=\angle C D B$
$C D=C D$
$\triangle C D A$ and $\triangle C D B$
$C A=C B$
C is center of circle

The center of the circle is the only point within the circle that has points on the circumference equal distance from it.

Example of an application

1. Is O the centre of circle below?
2. Determine angle x.

3.

In \triangle SOT and $\triangle U O T$

1. $\mathrm{OT}=\mathrm{OT}$ (Given)
2. $S \hat{T} O=U \hat{T} O$ (Given)
3. TS = TU (Given)
$\therefore \triangle S O T \equiv \triangle U O T \quad$ (SAS)
$\mathrm{SO}=\mathrm{UO}$ (Congruency)
$\therefore 0$ is the centre of the circle.
4.

SÔT $=22^{0} \quad(\triangle S O T \equiv \triangle U O T)$
$90^{\circ}+22^{\circ}+x=180^{\circ}$ (Angles of \triangle SOT supplementary)
$\therefore x=68^{0}$

Terminology to understand next Theorem

FOR ALL THREE DIAGRAMS

HINT:

Put left finger on A
Put right finger on B
Move along lines to centre O where your fingers will meet. (Angle at Centre)
Put left finger on A
Put right finger on B
Move along lines to circumference where your fingers will meet. (Angle at Circumference)

Example of Angle at Centre and Angle at Circumference. $2 x$ is at centre and x is at centre.

YOU DON'T NEED TO WORK OUT x and $2 x$. THIS IS JUST TO ILLUSTRATE THE CONCEPT OF ANGLE AT CENTRE AND ANGLE AT CIRCUMFERENCE

STATEMENT OF THEOREM

The angle subtended by an arc at the

 centre of a circle is double the size of the angle subtended by the same arc at the circle (on the same side of the chord as the centre).```
at centre =2
 circumference
```

Given: Circle with centre $O$ and arc $A B$ subtended $A \hat{O} B$ at the centre and $A \hat{C B}$ on the circumference

## To Prove: $B \hat{O} C=2 \hat{B} \hat{A} C$

Construction: Draw AO extended


This Proof has three different diagrams that could be given- maybe all or maybe one or two.

Proof is the same for all three diagrams up to a point.
$\therefore \hat{O}_{1}=2 \hat{A}_{1}$
Similarly $\hat{O}_{2}=2 y$
$\therefore \hat{O}_{2}=2 \hat{A}_{2}$
In diagrammes A and C :
$\hat{O}_{1}+\hat{O}_{2}=2 x+2 y$
$=2(x+y)$
$A O B=2 A C B$
n diagram B


For Diagram A and C For Diagram B

This is used when you do applications of the theorem as a reason

## Example Application Questions

Find the unknown angles giving reasons for your answers.


| angle $x=$ | $42^{\circ}$ (Angle at the centre $=2 x$ angle at circum $)$. |
| :--- | :--- |
| angle $y=$ | $70^{\circ}$ (Angle at the centre $=2 x$ angle at circum $)$. |

## Example Application Questions

Find the unknown angles giving reasons for your answers.


```
3.
OA B = 42 }\mp@subsup{}{}{0}\quad(OA=OB RADIUS -
ANGLES OPP EQUAL SIDES)
x+O\widehat{A}B+O\widehat{B}A=18\mp@subsup{0}{}{\circ}\mathrm{ (ANGLES OF TRIANGLE}
SUPPLEMENTARY
X + 420}+4\mp@subsup{2}{}{0}=18\mp@subsup{0}{}{0
x=960
y=480}\mathrm{ (Angle at the centre = 2x angle at circum)
```



```
4.
p=1240}\mathrm{ (Angle at the centre }=2\times\mathrm{ angle at circum).
O\widehat{A}B=q=O\widehat{B}A\quad(OA=OB RADIUS -
ANGLES OPP EQUAL SIDES)
1240}+q+q=1800 (ANGLES OF TRIANGLE SUPPLEMENTARY
1240}+2q=180
q=(180-124)}\div
\thereforeq=280
```

