1

CUBIC GRAPHS AND THE DERIVATIVE

TO SEE THE RELATIONSHIP BETWEEN THE DERIVATIVE AND THE CUBIC GRAPH

CONSIDER $f(x)=x^{3}+3 x^{2}-9 x-27$

NOW COMPARE TO DERIVATIVE GRAPH OF THE SAME FUNCTION
ef(x) $=x^{3}+3 x^{2}-9 x-27$

- Derivative is
$f^{\prime}(x)=3 x^{2}+6 x-9$

NOW SKETCH $f^{\prime}(x)=3 x^{2}+6 x-9$

- The graph will cut the x-axis at $(-3 ; 0)$ and $(1 ; 0)$
- The graph will cut the y-axis at (0;-9)
- REMEMBER THIS GRAPH IS ILLUSTRATING THE DERIVATIVE OF THE ORIGINAL FIX) GRAPH.

The graph represents the derivative of the $f(x)$ graph.

BREAK
DOWN THE
DERIVATIVE
GRAPH - $f^{\prime}(x)$

Derivative is the gradient of a graph at a point.

The $f^{\prime}(x)$ graph (GRADIENT OF ORIGINAL $f(x)$ GRAPH) is positive above the x-axis.

The $f^{\prime}(x)$ graph (GRADIENT OF ORIGINAL $f(x)$ GRAPH) is negative below the x-axis.

The $f^{\prime}(x)$ graph (gradient of original $f(x)$ graph) is positive above the x-axis.
The $f^{\prime}(x)$ graph (gradient of original $f(x)$ GRAPH) is negative below the x -axis.

- At $x=-3$ the graph cuts the x-axis, therefore is 0 at that point. This means derivative of original $f(x)$ is 0 .
- At $x=1$ the graph cuts the x-axis again, therefore is 0 at this point as well. This means derivative of original $f(x)$ is 0 .
- Points $x<-3$, will be positive (above the x axis)
- Points $-3<x<1$, will be negative (below the x-axis)
- Points $x>1$, will be positive (above the x axis)

- THEREFORE
- The original graph will have a positive gradient for $x<-3$
- The original graph will have a negative gradient for $-3<x$ <1
- The original graph will have a positive gradient for $\mathrm{x}>1$

TURNING POINT OF $f^{\prime}(x)$

- The graph of $f^{\prime}(x)$ (Derivative of $f(x))$ turns where $x=-1$. Where the This can be further explained by working out the second derivative of $f(x)$. Derivative (Gradient) of the Derivative (Gradient) is 0
- $f^{\prime}(x)=3 x^{2}+6 x-9$
- $f^{\prime \prime}(x)=6 x+6$
- $f^{\prime \prime}(x)=6 x+6=0$
- $x=-1$
- This would then be the x-value of the point of infliction of $f(x)$

THEREFORE PUTTING IT ALL TOGETHER

- The RED graph is the Derivative - $f^{\prime}(x)$.
- The BLUE graph is the original cubic graph - $f(x)$.
- The Cubic graph $f(x)$ has a positive gradient (going up) for $x<-3$ and $x>1$.
- The Cubic graph $f(x)$ has a negative gradient (going down) for $-3<x<1$.
- The point of infliction will be where $x=-1$. This is where the $f^{\prime}(x)$ turns or where the derivative of the derivative is $0 . f^{\prime \prime}(x)=0$.
- To obtain the y-value of the point of infliction substitute $x=-1$ into the original $f(x)$.

EXAMPLE TO TRY

1. For what x-values will the $f(x)$ graph have negative gradient?
2. For what x-values will the $f(x)$ graph have positive gradient?
3. Sketch a rough sketch of $f(x)$.

ANSWER

- 1. $-1<x<4$
-2. $x<-1$ AND $x>4$
- 3.

When sketching the graph in this example there are things, we do not know but we were asked to draw a rough sketch. We know the gradient, so we know the shape and thus the turning points at x -values. We cannot know for certain what the y-value will be where the graph furns. I have two possible sketches. There are more possible sketches with the information given in this example. If you were given more info you could have drawn a more precise rough sketch.

