GRADE 12 FUNCTIONS PART 4

 \bigcirc

0

LOG AND EXPONENTIAL FUNCTIONS

GRAPH OF $y = b^x$ - EXPONENTIAL GRAPH

• Example

 $y = 3^{x}$

- Domain: $x \in \mathbb{R}$
- Range: y > 0
- Increasing function (As x increases so does y)
- Y-Intercept (when x=0): (0;1)
- X-Intercept: (No x-intercept)
- Asymptote: y=0 (x-axis)

CHANGING EXPONENTIAL FUNCTION TO A LOG FUNCTION

- An Exponential Expression can be changed into a Log expression and vice versa
- Example
- $2^3 = 8$ CHANGED INTO A LOG $3 = \log_2 8$

TRY THE FOLLOWING:

• Exercise 1

Rewrite the following in LOG form:

a. $2^4 = 16$ b. $5^2 = 25$ c. $3^2 = 9$ d. $3^3 = 27$ e. $2^5 = 32$ f. $10^2 = 100$

ANSWERS TO EXERCISE 1

• Exercise 1

Rewrite the following in LOG form:

a.	$2^4 = 16$		ANSWERS
b.	$5^2 = 25$	a.	$2 = \log_5 25$
C.	$3^2 = 9$	b.	$3 = \log_2 9$
d.	$3^3 = 27$	с.	$3 = \log_3 27$
e.	$2^5 = 32$	d.	$5 = \log_2 32$
f.	$10^2 = 100$	e.	$2 = \log_{10} 100$

READING THE LOG NOTATION $2 = \log_5 25$ Reads "2 is equal to LOG 25 base 5" **THEREFORE TO GENERALISE :** $y = \log_a x$ Reads "y is equal to LOG x base a"

TRY THE FOLLOWING:

Exercise 1

Rewrite the following in EXPONENTIAL form:

a. $2 = \log_6 36$ b. $6 = \log_2 64$ c. $2 = \log_7 49$ d. $y = \log_2 x$

ANSWERS TO EXERCISE 2

Exercise 1

Rewrite the following in EXPONENTIAL form:

a. $2 = \log_6 36$ ANSWERSb. $6 = \log_2 64$ a. $6^2 = 36$ b. $2^6 = 64$ b. $2^6 = 64$ c. $2 = \log_7 49$ c. $7^2 = 49$ d. $y = \log_2 x$ d. $2^y = x$

INVERSE OF $y = a^x$

- The inverse of $y = a^x$ (EXPONENTIAL FUNCTION) is $x = a^y$ (REMEMBER x becomes y and y becomes x)
- To make y the subject of the inverse we use the LOG function.
- THEREFORE $x = a^{y}$ becomes $y = \log_{a} x$

Ò

• If $f(x) = a^x$ then the inverse is $f^{-1}(x) = \log_a x$

EXAMPLE INVOLVING GRAPHS

Example

If $f(x) = 3^x$

a. Determine f^{-1} (*INVERSE*) in the form of $y = \dots$

b. Sketch the graphs of $f^{-1}(x)$ and f(x) and y = x on the same set of axes

c. Determine the Domain and Range of $f^{-1}(x)$ and f(x)

ANSWER TO EXAMPLE INVOLVING GRAPHS

a. $f(x) = 3^{x}$ $y = 3^{x}$ $x = 3^{y}$ $y = \log_{3} x$ $\therefore f^{-1}(x) = \log_{3} x$

с.

Domain of f(x): $x \in \mathbb{R}$ Range of f(x): y > 0Domain of $f^{-1}(x)$: x > 0Range of $f^{-1}(x)$: $y \in \mathbb{R}$ REMEMBER THAT EVERYTHING TO DO WITH x BECOMES y AND EVERYTHING TO DO WITH y BECOMES x. THIS APPLIES TO THE DOMAIN AND RANGE AS WELL.

SKETCHING THE GRAPHS

To Sketch the Exponential and Log Graph, use a table.

 $\overline{f(x)} = 3^x$

- FOR THE FUNCTION: CHOOSE ANY X-Values. As long as there is negatives and positives and 0.
- Substitute into the function to get the y-value.
- Plot the points and draw a freehand curve between the points

x	-2	-1	0	1	2	3
$f(x) = 3^x$	$3^{-2} = \frac{1}{9}$	$3^{-1} = \frac{1}{3}$	3 ⁰ =1	3 ¹ =3	3 ² =9	3 ³ =27
POINTS TO PLOT	$(-2; \frac{1}{9})$	$(-1; \frac{1}{3})$	(0;1)	(1;3)	(2;9)	(3;27)

FOR THE INVERSE: CHOOSE ANY y-Values. As long as there is negatives and positives and 0

У	-2	-1	0	1	2	3
$x = 3^{y}$ (which is $y = \log_3 x$)	$3^{-2} = \frac{1}{9}$	$3^{-1} = \frac{1}{3}$	3 ⁰ =1	3 ¹ =3	3 ² =9	3 ³ =27
POINTS TO PLOT	(¹ / ₉ ;-2)	$(\frac{1}{3}; -1)$	(1;0)	(3;1)	(9;2)	(27;3)

Notice that the x and y coordinates swap around from the function to the inverse.

PAST PAPER QUESTION

QUESTION 5

Sketched below is the graph of $f(x) = k^x$; $k \ge 0$. The point (4; 16) lies on f_{i}

5.1 Determine the value of k.

5.2 Graph g is obtained by reflecting graph f about the line y = x. Determine the equation of g in the form y = ...

5.3 Sketch the graph g. Indicate on your graph the coordinates of two points on g.

(2)

(2)

(4)