GRADE 12 FUNCTIONS PART 4

 LOG AND EXPONENTIAL FUNCTIONS
GRAPH OF $y=b^{x}$ - EXPONENTIAL GRAPH

- Example
$y=3^{x}$

- Domain: $x \in \mathbb{R}$
- Range: $y>0$
- Increasing function (As x increases so does y)
- Y-Intercept (when $x=0$): $(0 ; 1)$
- X-Intercept: (No x-intercept)
- Asymptote: $y=0$ (x-axis)

CHANGING EXPONENTIAL FUNCTION TO A LOG FUNCTION

- An Exponential Expression can be changed into a Log expression and vice versa

Example
$2^{3}=8$ CHANGED INTO A LOG $-3=\log _{2} 8$

EXPONENT BECOMES THE LOG

TRY THE FOLLOWING:

- Exercise 1

Rewrite the following in LOG form:
a. $2^{4}=16$
b. $5^{2}=25$
c. $3^{2}=9$
d. $3^{3}=27$
e. $2^{5}=32$
f. $10^{2}=100$

ANSWERS TO EXERCISE 1

- Exercise 1

Rewrite the following in LOG form:
a. $2^{4}=16$

ANSWERS
b. $5^{2}=25$
a. $2=\log _{5} 25$
c. $3^{2}=9$
b. $3=\log _{2} 9$
d. $3^{3}=27$
c. $3=\log _{3} 27$
e. $2^{5}=32$
f. $10^{2}=100$
d. $5=\log _{2} 32$
e. $2=\log _{10} 100$

$$
2=\log _{5} 25
$$

Reads " 2 is equal to LOG 25 base 5"
THEREFORE TO GENERALISE :

$$
y=\log _{a} x
$$

Reads " y is equal to LOG x base a"

TRY THE FOLLOWING:

Exercise 1

Rewrite the following in EXPONENTIAL form:
a. $2=\log _{6} 36$
b. $6=\log _{2} 64$
c. $2=\log _{7} 49$
d. $y=\log _{2} x$

ANSWERS TO EXERCISE 2

Exercise 1

Rewrite the following in EXPONENTIAL form:
a. $2=\log _{6} 36$

ANSWERS

b. $6=\log _{2} 64$
a. $6^{2}=36$
c. $2=\log _{7} 49$
b. $2^{6}=64$
c. $7^{2}=49$
d. $y=\log _{2} x$
d. $2^{y}=x$

INVERSE OF $y=a^{x}$

- The inverse of $y=a^{x}$ (EXPONENTIAL FUNCTION) is $x=a^{y}$ (REMEMBER x becomes y and y becomes x)
- To make y the subject of the inverse we use the LOG function.
- THEREFORE $x=a^{y}$ becomes $y=\log _{a} x$
- If $\mathrm{f}(\mathrm{x})=a^{x}$ then the inverse is $f^{-1}(x)=\log _{a} x$

EXAMPLE INVOLVING GRAPHS

Example

If $f(x)=3^{x}$
a. Determine $f^{-1}($ INVERSE $)$ in the form of $y=\ldots .$.
b. Sketch the graphs of $f^{-1}(x)$ and $f(x)$ and $y=x$ on the same set of axes
c. Determine the Domain and Range of $f^{-1}(x)$ and $f(x)$

ANSWER TO EXAMPLE INVOLVING GRAPHS

a. $f(x)=3^{x}$
$y=3^{x}$
$x=3^{y}$
$y=\log _{3} x$
$\therefore f^{-1}(x)=\log _{3} x$

c.

REMEMBER THAT EVERYTHING TO DO WITH x BECOMES y AND EVERYTHING TO DO WITH y BECOMES x. THIS APPLIES TO THE DOMAIN AND RANGE AS WELL.
b.

SKETCHING THE GRAPHS

To Sketch the Exponential and Log Graph, use a table.

$$
f(x)=3^{x}
$$

- FOR THE FUNCTION: CHOOSE ANY X-Values. As long as there is negatives and positives and 0 .
- Substitute into the function to get the y-value.
- Plot the points and draw a freehand curve between the points

x	-2	-1	0	1	2	3
$f(x)=3^{x}$	$3^{-2}=\frac{1}{9}$	$3^{-1}=\frac{1}{3}$	$3^{0}=1$	$3^{1}=3$	$3^{2}=9$	$3^{3}=27$
POINTS TO PLOT	$\left(-2 ; \frac{1}{9}\right)$	$\left(-1 ; \frac{1}{3}\right)$	$(0 ; 1)$	$(1 ; 3)$	$(2 ; 9)$	$(3 ; 27)$

FOR THE INVERSE: CHOOSE ANY y-Values. As long as there is negatives and positives and 0

y	-2	-1	0	1	2	3
$x=3^{y}\left(\right.$ which is $\left.y=\log _{3} x\right)$	$3^{-2}=\frac{1}{9}$	$3^{-1}=\frac{1}{3}$	$3^{0}=1$	$3^{1}=3$	$3^{2}=9$	$3^{3}=27$
POINTS TO PLOT	$\left(\frac{1}{9} ;-2\right)$	$\left(\frac{1}{3} ;-1\right)$	(1;0)	$(3 ; 1)$	(9;2)	(27;3)

Notice that the x and y coordinates swap around from the function to the inverse.

PAST PAPER QUESTION

QUESTION 5

Sketched below is the graph of $f(x)=k^{x} ; k>0$. The point $(4 ; 16)$ lies on f.

5.1 Determine the value of k.
5.2 Graph g is obtained by reflecting graph f about the line $y=x$. Determine the equation of g in the form $y=\ldots$

Sketch the graph g. Indicate on your graph the coordinates of two points on g.

