GRADE 11
Functions 5 Reflection about the y - axis and average gradient and gradient of a curve at a point.
Answers

WEBSITE NOTES

TOPIC:

- Reflection about the y - axis (All functions)
- Average gradient and gradient of a curve at a point.

REMEMBER THE FOLLOWING

Function change	Shift
$f(x)+c$	Shift the graph of $f(x)$ up c units
$f(x)-c$	Shift the graph of $f(x)$ down c units
$f(x+c)$	Shift the graph of $f(x)$ left c units
$f(x-c)$	Shift the graph of $f(x)$ right c units
$-f(x)$	Reflect the graph of $f(x)$ about the x-axis
$f(-x)$	Reflect the graph of $f(x)$ about the y-axis
$f(c . x)$	Compress the graph of $f(x)$ horizontally by a factor of c.
$c . f(x)$	Stretch the graph of $f(x)$ vertically by a factor of c.

Reflection about y-axis

Straight Line Graph

$f(x)=m x+c$

Example 1

$f(x)=3 x+4$
Write down the equation $g(x)$ which reflects $f(x)$ about the y-axis (x becomes "negativized")
$f(-x)=3(-x)+4$
$g(x)=-3 x+4$

Parabola

$f(x)=a(x+p)^{2}+q \quad$ or $f(x)=a x^{2}+b x+c$

Take note that the turning point is (-2;3)

Example 2

$f(x)=2(x+2)^{2}+3$ OR after multiplying out $f(x)=2 x^{2}+8 x+11$
Write down the equation $g(x)$ which reflects $f(x)$ about the y-axis (x becomes "negativized")

Hyperbola

$$
f(x)=\frac{a}{x+p}+q
$$

Example 3

Remember the axis of symmetry is $x=1$ and $y=-1$
$f(x)=\frac{3}{x-1}-1$ \qquad
Write down the equation $g(x)$ which reflects $f(x)$ about the y-axis (x becomes "negativized")

$$
\begin{aligned}
& f(-x)=\frac{3}{(-x)-1}-1 \\
& g(x)=\frac{3}{-(x+1)}-1 \\
& g(x)=\frac{-3}{x+1}-1
\end{aligned}
$$

Remember the axis of symmetry is now $x=-1$ and $y=-1$

Exponential Graphs

$f(x)=a b^{x+p}+q$
Asymptote is $\mathrm{y}=3$
Example 4
$f(x)=5.2^{x-2}+3$
Write down the equation $g(x)$ which reflects $f(x)$ about the y-axis (x becomes "negativized")
$f(-x)=5.2^{(-x)-2}+3$
$g(x)=5.2^{-(x+2)}+3 \quad$ Asymptote is $\mathrm{y}=3$
$g(x)=5 .\left(\frac{1}{2}\right)^{(x+2)}+3$

Example 5 (Try yourself)

Consider $f(x)=\frac{4}{x+2}-1$
a. Write down the asymptotes
b. Write down the equation $g(x)$ which reflects $f(x)$ about the y-axis
c. Try the following question Determine the symmetry lines

Answers

a. $\quad \mathrm{x}=-2$ and $\mathrm{y}=-1$
b. $f(x)=\frac{4}{-x+2}-1$
$f(-x)=\frac{-x+2}{-(x-2)}-1$
$g(x)=\frac{-4}{x-2}-1$
c. Symmetry Line 1: $\quad y=x+c$

$$
\begin{aligned}
& -1=-2+c \\
& 1=c \\
& y=x+1
\end{aligned}
$$

Symmetry Line 2: $\quad y=-x+c$

$$
\begin{aligned}
& -1=-(-2)+c \\
& -1=2+c \\
& -3=c \\
& y=-x-3
\end{aligned}
$$

AVERAGE GRADIENT BETWEEN TWO POINTS

$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
A curve does not have a specific gradient like a straightline graph. A curve can have an average gradient.

REMEMBER y_{2} IS ALSO $f\left(x_{2}\right)$ and y_{1} IS ALSO $f\left(x_{1}\right)$

Example 1

Consider $f(x)=x^{2}+7 x+10$. Determine the average gradient between the points $x=2$ and $x=-1$

Answer

1. First work out the y value at $x=2$ and $x=-1$

LET $x_{1}=2$ and $x_{2}=-1$
$f(2)=(2)^{2}+7(2)+10$.
$f(2)=4+14+10$
$f(2)=28=y_{1}$
$f(-1)=(-1)^{2}+7(-1)+10$
$f(-1)=1-7+10$
$f(-1)=4=\mathrm{y}_{2}$
2. Use the gradient formula

$$
\begin{aligned}
& m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& m=\frac{4-28}{-1-2} \\
& m=\frac{-24}{-3}=8
\end{aligned}
$$

The average gradient between $x=2$ and $x=-1$ for $f(x)$ is 8 .

Example 2 (Try yourself)

Determine the average gradient of the graph of $y=5 x^{2}-4$ between:
a) $x=1$ and $x=3$
b) $x=2$ and $x=3$

Answers

a) The y-values at $x=1$ and $x=3$ are 1 and 41
$m=20$
The y-values at $x=2$ and $x=3$ are 16 and 41
$m=25$

Example 3 (Try yourself)

Determine the average gradient of the graph of $g(x)=\frac{4}{x-3}-1$ between:
a) $x=-1$ and $x=0$

Answers

The y-values at $x=-1$ and $x=0$ are -2 and $-\frac{7}{3}$

$$
\begin{aligned}
m & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
m & =\frac{-\frac{7}{3}-(-2)}{0-(-1)} \\
m & =-\frac{1}{3}
\end{aligned}
$$

