GRADE 11 Functions 5 Reflection about the y – axis and average gradient and gradient of a curve at a point.

<u>Answers</u>

WEBSITE NOTES

TOPIC:

- Reflection about the y axis (All functions)
- Average gradient and gradient of a curve at a point.

REMEMBER THE FOLLOWING

Function change	Shift
f(x) + c	Shift the graph of f(x) up c units
f(x) - c	Shift the graph of f(x) down c units
f(x + c)	Shift the graph of f(x) left c units
f(x - c)	Shift the graph of f(x) right c units
-f (x)	Reflect the graph of f(x) about the x-axis
f (-x)	Reflect the graph of f(x) about the y-axis
f(c.x)	Compress the graph of f(x) horizontally by a factor of c.
c.f(x)	Stretch the graph of f(x) vertically by a factor of c.

Reflection about y-axis

Straight Line Graph

f(x) = mx + c

 $\frac{\text{Example 1}}{f(x) = 3x + 4}$

Write down the equation g(x) which reflects f(x) about the y-axis (x becomes "negativized") f(-x) = 3(-x) + 4

ParabolaTake note that the turning $f(x) = a(x + p)^2 + q$ or $f(x) = ax^2 + bx + c$ Take note that the turningExample 2f(x) = 2(x + 2)^2 + 3 OR after multiplying out $f(x) = 2x^2 + 8x + 11$

Write down the equation g(x) which reflects f(x) about the y-axis (x becomes "negativized")

Remember the axis of symmetry is x=1 and y=-1

Exponential Graphs	
$f(x) = ab^{x+p} + q$ Example 4	Asymptote is y = 3
$f(x) = 5 \cdot 2^{x-2} + 3$	

 $f(x) = 5.2^{x-2} + 3$ Write down the equation g(x) which reflects f(x) about the y-axis (x becomes "negativized")

 $f(-x) = 5 \cdot 2^{(-x)-2} + 3$ $g(x) = 5 \cdot 2^{-(x+2)} + 3$ $g(x) = 5 \cdot (\frac{1}{2})^{(x+2)} + 3$

Asymptote is y = 3

- Example 5 (Try yourself) Consider $f(x) = \frac{4}{x+2} 1$ a. Write down the asymptotes
 - b. Write down the equation g(x) which reflects f(x) about the y-axis
 c. Try the following question Determine the symmetry lines

y = x + 1

<u>Answers</u>

a.
$$x = -2$$
 and $y = -1$
b. $f(x) = \frac{4}{-1} = 1$

b.
$$f(x) = \frac{-x+2}{-x+2} - 1$$

 $f(-x) = \frac{4}{-(x-2)} - 1$
 $g(x) = \frac{-4}{x-2} - 1$
c. Symmetry Line 1: $y = x + c$
 $-1 = -2 + c$
 $1 = c$

Symmetry Line 2: y = -x + c-1 = -(-2) + c-1 = 2 + c -3 = c y = -x - 3

AVERAGE GRADIENT BETWEEN TWO POINTS	A curve does not have a specific gradient like a straight-
$m = \frac{y_2 - y_1}{x_1 - x_2}$	line graph. A curve can have an average gradient.
REMEMBER y_2 IS ALSO $f(x_2)$ and y_1 IS ALSO $f(x_1)$	

Example 1

Consider $f(x) = x^2 + 7x + 10$. Determine the average gradient between the points x=2 and x=-1

Answer 1. First work out the y value at x=2 and x=-1 LET x₁=2 and x₂=-1 $f(2) = (2)^2 + 7(2) + 10.$ f(2) = 4 + 14 + 10 $f(2) = 28 = y_1$ $f(-1) = (-1)^2 + 7(-1) + 10$ f(-1) = 1 - 7 + 10 $f(-1) = 4 = y_2$

2. Use the gradient formula

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$
$$m = \frac{4 - 28}{-1 - 2}$$
$$m = \frac{-24}{-3} = 8$$

The average gradient between x=2 and x=-1 for f(x) is 8.

Example 2 (Try yourself)

Determine the average gradient of the graph of $y = 5x^2 - 4$ between: **a**) x = 1 and x = 3

b) *x* = 2 and *x* = 3

Answers

a) The y-values at x = 1 and x = 3 are 1 and 41 *m* = 20 The y-values at x = 2 and x = 3 are 16 and 41 *m* =25

Example 3 (Try yourself)

Determine the average gradient of the graph of $g(x) = \frac{4}{x-3} - 1$ between: **a**) x = -1 and x = 0

Answers

The y-values at x = -1 and x = 0 are -2 and $-\frac{7}{3}$

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$
$$m = \frac{-\frac{7}{3} - (-2)}{0 - (-1)}$$
$$m = -\frac{1}{3}$$