GRADE 11

Functions 5 Reflection about the y - axis and average gradient and gradient of a curve at a point.

WEBSITE NOTES

TOPIC:

- Reflection about the y axis (All functions)
- Average gradient and gradient of a curve at a point.

REMEMBER THE FOLLOWING

Function change	Shift
f(x) + c	Shift the graph of f(x) up c units
f(x) - c	Shift the graph of f(x) down c units
f(x + c)	Shift the graph of f(x) left c units
f(x - c)	Shift the graph of f(x) right c units
-f (x)	Reflect the graph of f(x) about the x-axis
f (-x)	Reflect the graph of f(x) about the y-axis
f(c.x)	Compress the graph of f(x) horizontally by a factor of c.
c.f(x)	Stretch the graph of f(x) vertically by a factor of c.

Reflection about y-axis

Straight Line Graph

$$f(x) = mx + c$$

Example 1

$$\overline{f(x) = 3x + 4}$$

Write down the equation g(x) which reflects f(x) about the y-axis (x becomes "negativized")

$$f(-x) = 3(-x) + 4$$

$$g(x) = -3x + 4$$

$$g(x) = -3x + 4$$

$$f(x) = 3x + 4$$

Parabola

$$\overline{f(x) = a(x+p)^2 + q} \quad \text{or } f(x) = ax^2 + bx + c$$

Take note that the turning point is (-2;3)

Example 2

$$f(x) = 2(x+2)^2 + 3$$
 OR after multiplying out $f(x) = 2x^2 + 8x + 11$

Write down the equation g(x) which reflects f(x) about the y-axis (x becomes "negativized")

$$f(-x) = 2(-x+2)^2 + 3$$

$$f(-x) = 2(-x+2)^2 + 3$$

$$g(x) = 2(x^{2} - 4x + 4) + 3$$

$$g(x) = 2x^{2} - 8x + 11$$

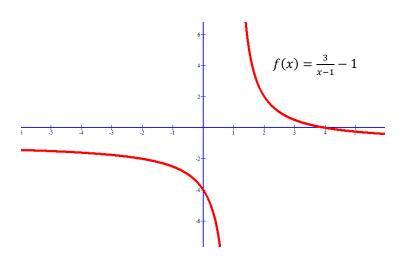
$$f(x) = 2x^{2} + 8x + 11$$

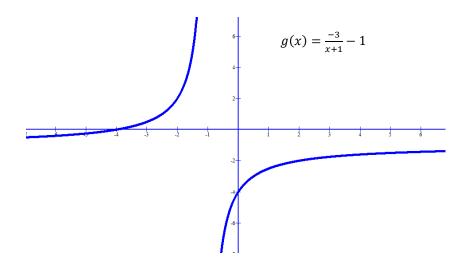
$$g(x) = 2x^{2} - 8x + 1$$

$$g(x) = 2x^{2} - 8x + 1$$

$$g(x) = 2x^{2} - 8x + 1$$

$$f(x) = \frac{a}{x+p} + C$$


$$\frac{\text{Hyperbola}}{f(x) = \frac{a}{x+p}} + q$$


$$\frac{\text{Example 3}}{f(x) = \frac{3}{x-1}} - 1$$

Remember the axis of symmetry is x=1 and y=-1

Write down the equation g(x) which reflects f(x) about the y-axis (x becomes "negativized") $f(-x) = \frac{3}{(-x)-1} - 1$ $g(x) = \frac{3}{-(x+1)} - 1$ Remember the axis of symmetry is now x=-1 and y=-1

$$f(-x) = \frac{3}{(-x)-1} - 1$$
$$g(x) = \frac{3}{-(x+1)} - 1$$

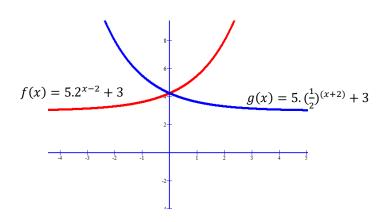
Exponential Graphs

$$f(x) = ab^{x+p} + q$$

Example 4

$$\overline{f(x)} = 5.2^{x-2} + 3$$

Write down the equation g(x) which reflects f(x) about the y-axis (x becomes "negativized")


$$f(-x) = 5.2^{(-x)-2} + 3$$

$$g(x) = 5.2^{-(x+2)} + 3$$

$$g(x) = 5 \cdot (\frac{1}{2})^{(x+2)} + 3$$

Asymptote is
$$y = 3$$

Asymptote is y = 3

Example 5 (Try yourself)
Consider $f(x) = \frac{4}{x+2} - 1$

- a. Write down the asymptotes
- b. Write down the equation g(x) which reflects f(x) about the y-axis
- c. Try the following question Determine the symmetry lines

AVERAGE GRADIENT BETWEEN TWO POINTS

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

A curve does not have a specific gradient like a straightline graph. A curve can have an average gradient.

REMEMBER y_2 IS ALSO $f(x_2)$ and y_1 IS ALSO $f(x_1)$

Example 1

Consider $f(x) = x^2 + 7x + 10$. Determine the average gradient between the points x=2 and x=-1

Answer

1. First work out the y value at x=2 and x=-1

$$f(2) = (2)^2 + 7(2) + 10.$$

$$f(2) = 4 + 14 + 10$$

$$f(2) = 28 = y_1$$

$$f(-1) = (-1)^2 + 7(-1) + 10$$

$$f(-1) = 1 - 7 + 10$$

$$f(-1) = 1 - 7 + 10$$

$$f(-1) = 4 = y_2$$

2. Use the gradient formula $m = \frac{y_2 - y_1}{x_2 - x_1}$ $m = \frac{4 - 28}{-1 - 2}$ $m = \frac{-24}{-3} = 8$

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

$$m = \frac{4-28}{-1-2}$$

$$m = \frac{-24}{-3} = 8$$

The average gradient between x=2 and x=-1 for f(x) is 8.

Example 2 (Try yourself)

Determine the average gradient of the graph of $y = 5x^2 - 4$ between:

a)
$$x = 1$$
 and $x = 3$

b)
$$x = 2$$
 and $x = 3$

Example 3 (Try yourself)

Determine the average gradient of the graph of $g(x) = \frac{4}{x-3} - 1$ between:

a)
$$x = -1$$
 and $x = 0$