GRADE 11

Functions 4 ANSWERS - Answers at the end

WEBSITE NOTES

TOPIC:

- Revise the effect of a and q and investigate the effect of p on the graphs of the functions defined by:
- $y = f(x) = ab^{x+p} + q; b>0; b \neq 1$

REMEMBER THE FOLLOWING

Function change	Shift
f(x) + c	Shift the graph of f(x) up c units
f(x) - c	Shift the graph of f(x) down c units
f(x + c)	Shift the graph of f(x) left c units
f(x - c)	Shift the graph of f(x) right c units
-f (x)	Reflect the graph of f(x) about the x-axis
f (-x)	Reflect the graph of f(x) about the y-axis
f(c.x)	Compress the graph of f(x) horizontally by a factor of c.
c.f(x)	Stretch the graph of f(x) vertically by a factor of c.

Exponential Graphs Effect of a, p and q

$$f(x) = ab^{x+p} + q$$

Example 1

 $\overline{consider\ f}(x) = 2^x$ for the examples that follow as well

- NO Vertical asymptote
- Y-Intercept is 1. (When x=0)
 - The Horizontal asymptote y = 0
- The graph increases from left to right therefore as x values increase so do the y values. We call this an increasing function.

Example 2

 $f(x) = 2^x + 3$

- NO Vertical asymptote
- Y-Intercept is 4. (When x=0)
- The Horizontal asymptote y = 3. (dotted line)
- The graph increases from left to right therefore as x values increase so do the y values. We call this an increasing function.

The Graph has shifted up 3 units from the origin

Example 3

- NO Vertical asymptote
- Y-Intercept is 8. (When x=0)
- The Horizontal asymptote y = 0.
- The graph increases from left to right therefore as x values increase so do the y values. We call this an increasing function.

The Graph has shifted left 3 units from the origin.

SUMMARY SO FAR

p changes will move the graph left or right. g changes will move the graph up or down.

Example 4

- NO Vertical asymptote
- Y-Intercept is 3. (When x=0)
- The Horizontal asymptote y = 0.
- The graph increases from left to right therefore as x values increase so do the y values. We call this an increasing function.

The Graph has become steeper because the value of a has increased. Remember we are comparing to the graph $f(x) = 2^x$ and a was 1. $(f(x) = 1 \times 2^x)$ is the same as $f(x) = 2^x$)

Example 5

- NO Vertical asymptote
- Y-Intercept is -1. (When x=0)
- The Horizontal asymptote y = 0.
- The graph decreases from left to right therefore as x values increase and the y values decrease. We call this a decreasing function.

The Graph has reflected about the x-axis because the value of a is negative. Remember we are **comparing to the graph** $f(x) = 2^x$ and a was 1. $(f(x) = 1 \times 2^x \text{ is the same as } f(x) = 2^x)$

Example 6

$$\overline{f(x) = \frac{1}{2} \times 1^x}$$

- NO Vertical asymptote
- Y-Intercept is 1. (When x=0)
- The Horizontal asymptote y = 0.
- The graph decreases from left to right therefore as x values increase and the y values decrease. We call this a decreasing function.

The Graph has reflected about the y-axis because the value of a is negative. We are comparing to the graph

$$f(x) = 1^x$$
 and a is 1. ($f(x) = 1 \times 1^x$ is the same as $f(x) = 1^x$)

Example 7

$$f(x) = 2^{-x}$$

- NO Vertical asymptote
- Y-Intercept is 1. (When x=0)
- The Horizontal asymptote y = 0.
- The graph decreases from left to right therefore as x values increase and the y values decrease. We call this a decreasing function.

The Graph has reflected about the y-axis because the value of a is negative. We are comparing to the graph

$$f(x) = 2^x$$
 and a is 1. ($f(x) = 1 \times 2^x$ is the same as $f(x) = 2^x$)

NOTE

$$f(x) = \frac{1}{2} \times 1^x$$
 is the same as $f(x) = 2^{-x}$

WHY???

$$f(x) = 2^{-x} = (\frac{1}{2})^x = \frac{1}{2} \times 1^x$$

SUMMARY SO FAR

p changes will move the graph left or right.

q changes will move the graph up or down.

If a is positive and bigger number value, then the graph becomes steeper.

If a is more negative, then the graph is reflected about the x-axis

If a is fraction, then the graph is reflected about the y-axis

Example 8 (Try yourself)

For the following Functions determine the following

- A. SHIFT
- B. ASYMPTOTE
- C. Y-INTERCEPT

1.
$$f(x) = 5.2^{x-2} + 3$$

Answer:

A. Shift

2 units right and 3 units up

- B. Asymptote
 - v = 3

C. Y-Intercept

(When x=0)

(0;4 1/4)

2.
$$f(x) = -4.3^{x+2} - 1$$

A. Shift

2 units left and 1 unit down

B. Asymptote

- y = -1 C. Y-Intercept (0;37) 3. $f(x) = 2.5^{x+1} 2$ A. Shift

1 unit left and 2 units down

- B. Asymptote
- B. Asymptote y = -2C. Y-Intercept (0;8)4. $f(x) = 3 \cdot \frac{1}{2}^{x} + 1$ A. Shift 0 units left and 1 unit upB. Asymptote

- B. Asymptote
- y = 1 C. Y-Intercept (0;4)