GRADE 11

Functions 4 ANSWERS - Answers at the end WEBSITE NOTES

TOPIC:

- Revise the effect of a and q and investigate the effect of p on the graphs of the functions defined by:
- $y=f(x)=a b^{x+p}+q ; \quad b>0 ; b \neq 1$

REMEMBER THE FOLLOWING

Function change	Shift
$f(x)+c$	Shift the graph of $f(x)$ up c units
$f(x)-c$	Shift the graph of $f(x)$ down c units
$f(x+c)$	Shift the graph of $f(x)$ left c units
$f(x-c)$	Shift the graph of $f(x)$ right c units
$-f(x)$	Reflect the graph of $f(x)$ about the x-axis
$f(-x)$	Reflect the graph of $f(x)$ about the y-axis
$f(c . x)$	Compress the graph of $f(x)$ horizontally by a factor of c.
$c . f(x)$	Stretch the graph of $f(x)$ vertically by a factor of c.

Exponential Graphs

Effect of a, p and q

$f(x)=a b^{x+p}+q$

Example 1

consider $f(x)=2^{x}$ for the examples that follow as well

- NO Vertical asymptote
- Y-Intercept is 1. (When $x=0$)
- The Horizontal asymptote $y=0$
- The graph increases from left to right therefore as x values increase so do the y values. We call this an increasing function.

Example 2

- NO Vertical asymptote
- Y-Intercept is 4. (When $\mathrm{x}=0$)
- The Horizontal asymptote $y=3$. (dotted line)
- The graph increases from left to right therefore as x values increase so do the y values. We call this an increasing function.
The Graph has shifted up 3 units from the origin

Example 3

$f(x)=2^{x+3}$

- NO Vertical asymptote
- $\quad \mathrm{Y}$-Intercept is 8 . (When $\mathrm{x}=0$)
- The Horizontal asymptote $\mathrm{y}=0$.
- The graph increases from left to right therefore as x values increase so do the y values. We call this an increasing function.
The Graph has shifted left 3 units from the origin.

Example 4

$f(x)=3 \times 2^{x}$

- NO Vertical asymptote
- Y-Intercept is 3. (When $x=0$)
- The Horizontal asymptote $y=0$.
- The graph increases from left to right therefore as x values increase so do the y values. We call this an increasing function.
The Graph has become steeper because the value of a has increased. Remember we are comparing to the graph $f(x)=2^{x}$ and a was 1. $\left(f(x)=1 \times 2^{x}\right.$ is the same as $f(x)=2^{x}$)

Example 5

$f(x)=-1 \times 2^{x}$

- NO Vertical asymptote
- Y-Intercept is -1 . (When $x=0$)
- The Horizontal asymptote $\mathrm{y}=0$.
- The graph decreases from left to right therefore as x values increase and the y values decrease. We call this a decreasing function.
The Graph has reflected about the x-axis because the value of a is negative. Remember we are comparing to the graph $f(x)=2^{x}$ and a was 1 . $\left(f(x)=1 \times 2^{x}\right.$ is the same as $\left.f(x)=2^{x}\right)$

Example 6

$f(x)=\frac{1}{2} \times 1^{x}$

Example 7
$f(x)=2^{-x}$

- NO Vertical asymptote
- Y-Intercept is 1. (When $x=0$)
- The Horizontal asymptote $\mathrm{y}=0$.
- The graph decreases from left to right therefore as x values increase and the y values decrease. We call this a decreasing function.
The Graph has reflected about the y-axis because the value of a is negative. We are comparing to the graph $f(x)=1^{x}$ and a is $1 .\left(f(x)=1 \times 1^{x}\right.$ is the same as $f(x)=1^{x}$)
- NO Vertical asymptote
- Y-Intercept is 1. (When $x=0$)
- The Horizontal asymptote $\mathrm{y}=0$.
- The graph decreases from left to right therefore as x values increase and the y values decrease. We call this a decreasing function.
The Graph has reflected about the y-axis because the value of \boldsymbol{a} is negative. We are comparing to the graph
$f(x)=2^{x}$ and a is $1 .\left(f(x)=1 \times 2^{x}\right.$ is the same as
$\left.f(x)=2^{x}\right)$
NOTE
$f(x)=\frac{1}{2} \times 1^{x}$ is the same as $f(x)=2^{-x}$
WHY???
$f(x)=2^{-x}=\left(\frac{1}{2}\right)^{x}=\frac{1}{2} \times 1^{x}$

SUMMARY SO FAR

p changes will move the graph left or right.
q changes will move the graph up or down.
If a is positive and bigger number value, then the graph becomes steeper.
If a is more negative, then the graph is reflected about the x-axis If a is fraction, then the graph is reflected about the y-axis

Example 8 (Try yourself)

For the following Functions determine the following
A. SHIFT
B. ASYMPTOTE
C. Y-INTERCEPT

1. $f(x)=5.2^{x-2}+3$

Answer:
A. Shift

2 units right and 3 units up
B. Asymptote
$y=3$
C. Y-Intercept
(When $x=0$)
(0;4 1/4)
2. $f(x)=-4.3^{x+2}-1$
A. Shift

2 units left and 1 unit down
B. Asymptote
$y=-1$
C. Y-Intercept
$(0 ; 37)$
3. $f(x)=2.5^{x+1}-2$
A. Shift

1 unit left and 2 units down
B. Asymptote
$y=-2$
C. Y-Intercept
(0;8)
4. $f(x)=3 \cdot \frac{1}{2}^{x}+1$
A. Shift

0 units left and 1 unit up
B. Asymptote
$y=1$
C. Y-Intercept
$(0 ; 4)$

