GRADE 11 Functions 4 WEBSITE NOTES

TOPIC:

- Revise the effect of *a* and *q* and investigate the effect of p on the graphs of the functions defined by:
 - $y = f(x) = ab^{x+p} + q; b > 0; b \neq 1$

REMEMBER THE FOLLOWING

Function change	Shift
f(x) + c	Shift the graph of f(x) up c units
f(x) - c	Shift the graph of f(x) down c units
f(x + c)	Shift the graph of f(x) left c units
f(x - c)	Shift the graph of f(x) right c units
-f (x)	Reflect the graph of f(x) about the x-axis
f (-x)	Reflect the graph of f(x) about the y-axis
f(c.x)	Compress the graph of f(x) horizontally by a factor of c.
c.f(x)	Stretch the graph of f(x) vertically by a factor of c.

Exponential Graphs Effect of a, p and q

- NO Vertical asymptote
- Y-Intercept is 1. (When x=0)
- The Horizontal asymptote y = 0
- The graph increases from left to right therefore as x values increase so do the y values. We call this an increasing function.

 $f(x) = 2^x + 3$

- NO Vertical asymptote
 - Y-Intercept is 4. (When x=0)
 - The Horizontal asymptote y = 3. (dotted line)
- The graph increases from left to right therefore as x values increase so do the y values. We call this an increasing function.

The Graph has shifted up 3 units from the origin

- NO Vertical asymptote
- Y-Intercept is 8. (When x=0)
- The Horizontal asymptote y = 0.
- The graph increases from left to right therefore as x values increase so do the y values. We call this an increasing function.

The Graph has shifted left 3 units from the origin.

Example 4

Example 5

 $f(x) = -1 \times 2^x$

- NO Vertical asymptote
- Y-Intercept is -1. (When x=0)
- The Horizontal asymptote y = 0.
- The graph decreases from left to right therefore as x values increase and the y values decrease. We call this a decreasing function.

The Graph has reflected about the x-axis because the value of a is negative. Remember we are comparing to the graph $f(x) = 2^x$ and a was 1.

 $(f(x) = 1 \times 2^x \text{ is the same as } f(x) = 2^x)$

Example 6

 $\overline{f(x) = \frac{1}{2} \times 1^x}$

The graph decreases from left to right therefore as x values increase and the y values decrease. We call this a decreasing function.

The Graph has reflected about the y-axis because the value of a is negative. We are comparing to the graph

 $f(x) = 2^x$ and a is 1. ($f(x) = 1 \times 2^x$ is the same as $f(x) = 2^x$

NOTE $f(x) = \frac{1}{2} \times 1^x$ is the same as $f(x) = 2^{-x}$ WHY??? $f(x) = 2^{-x} = (\frac{1}{2})^x = \frac{1}{2} \times 1^x$

SUMMARY SO FAR

p changes will move the graph left or right. g changes will move the graph up or down. If a is positive and bigger number value, then the graph becomes steeper. If a is more negative, then the graph is reflected about the x-axis If a is fraction, then the graph is reflected about the y-axis

Example 8 (Try yourself)

For the following Functions determine the following

- A. SHIFT
- B. ASYMPTOTE
- C. Y-INTERCEPT
 - 1. $f(x) = 5 \cdot 2^{x-2} + 3$
 - Answer:
 - A. Shift
 - 2 units right and 3 units up
 - B. Asymptote
 - v =3
 - C. Y-Intercept (When x=0)
 - 4 1/4
 - 2. $f(x) = -4.3^{x+2} 1$ 3. $f(x) = 2.5^{x+1} 2$
 - 4. $f(x) = 3 \cdot \frac{1^x}{2} + 1$