<u>GRADE 11</u> **Functions 2 ANSWERS** WEBSITE NOTES

TOPIC:

- Revise the effect of *a* and *q* and investigate the effect of p on the graphs of the functions defined by:
- y = f(x) = a(x + p) + q
- $y = f(x) = a (x + p)^2 + q$ $y = f(x) = a (x + p)^2 + q$
- $y = f(x) = \frac{a}{a} + q$ x + p

REMEMBER THE FOLLOWING

Function change	Shift
f(x) + c	Shift the graph of f(x) up c units
f(x) - c	Shift the graph of f(x) down c units
f(x + c)	Shift the graph of f(x) left c units
f(x - c)	Shift the graph of f(x) right c units
-f (x)	Reflect the graph of f(x) about the x-axis
f (-x)	Reflect the graph of f(x) about the y-axis
f(c.x)	Compress the graph of f(x) horizontally by a factor of c.
c.f(x)	Stretch the graph of f(x) vertically by a factor of c.

Hyperbola VERTICAL SHIFTS

$$f(x) = \frac{a}{x+p} + q$$
consider $f(x) = \frac{1}{x}$

The Vertical asymptote is x = 0The Horizontal asymptote y = 0

$$f(x) = \frac{1}{x+2} + 3$$

If p = 2 the hyperbola will shift 2 units to the left. The vertical asymptote is x = -2 now. If q = 3 the hyperbola will shift 3 units up. The Horizontal Asymptote is y = 3 now.

- Example 1 (Try yourself) 1. Consider $f(x) = \frac{4}{x^{-2}} + 4$
 - a. Describe the shift from the origin
 - b. Write down the asymptotes of the function.
 - 2. Consider $f(x) = -\frac{4}{x-3} 1$
 - a. Describe the shift from the origin
 - b. Write down the asymptotes of the function.
 - 3. Consider $f(x) = \frac{1}{x+2} 3$
 - a. Describe the shift from the origin
 - b. Write down the asymptotes of the function.

4. Consider $f(x) = -\frac{3}{x-1} + 2$

- a. Describe the shift from the origin
- b. Write down the asymptotes of the function.
- c. Write down h(x) if h(x) is the reflection of f(x) about the x-axis
- d. Write down k(x) if k(x) is the reflection of f(x) about the y-axis

<u>Answers</u>

- 1.
- a. 2 units right and 4 units up
- b. x = 2 (Vertical Asymptote) and y = 4 (Horizontal Asymptote)
- 2.
- a. Rewrite as $f(x) = \frac{-4}{x-3} 1$. The shift is 3 units right and 1 unit down. The -4 at the top indicates the quadrants the graph will be in. In other words, it influences the shape.

If a is negative, then the graph will be in the second and forth quadrant. $f(x) = \frac{-1}{x}$

- b. x = 3 and y = -1
- 3.
- a. 2 units left and 3 units down
- b. x=-2 and y = -3

4.

- 1 unit right and 2 units up x = 1 and y = 2a.
- b.

c.
$$f(x) = -\frac{3}{x-1} + 2$$

The Reflection about x-axis leaves x as is but changes the sign of the entire function. -f(x)

$$g(x) = -f(x) = \boxed{\left(-\frac{3}{x-1}+2\right)}$$

The asymptotes are now x=1 and y= -2

The Reflection about y-axis leaves y as is but changes the sign of the x-value. d. f(-x)

$$k(x) = f(-x) = -\frac{3}{(-x)-1} + 2$$

$$k(x) = f(-x) = -\frac{3}{-(x+1)} + 2$$

$$k(x) = f(-x) = \frac{3}{x+1} + 2$$

The asymptotes are now x=-1 and y= 2

If a is positive, then the graph will be in the first and third quadrants.