GRADE 11

Functions 2 ANSWERS

WEBSITE NOTES

TOPIC:

- Revise the effect of a and q and investigate the effect of p on the graphs of the functions defined by:
- $y=f(x)=a(x+p)+q$
- $y=f(x)=a(x+p)^{2}+q$
- $y=f(x)=a(x+p)^{2}+q$
- $y=f(x)=\frac{a}{x+p}+q$

REMEMBER THE FOLLOWING

Function change	Shift
$f(x)+c$	Shift the graph of $f(x)$ up c units
$f(x)-c$	Shift the graph of $f(x)$ down c units
$f(x+c)$	Shift the graph of $f(x)$ left c units
$f(x-c)$	Shift the graph of $f(x)$ right c units
$-f(x)$	Reflect the graph of $f(x)$ about the x-axis
$f(-x)$	Reflect the graph of $f(x)$ about the y-axis
$f(c . x)$	Compress the graph of $f(x)$ horizontally by a factor of c.
$c . f(x)$	Stretch the graph of $f(x)$ vertically by a factor of c.

Hyperbola

VERTICAL SHIFTS

$f(x)=\frac{a}{x+p}+q$
consider $f(x)=\frac{1}{x}$

The Vertical asymptote is $x=0$
The Horizontal asymptote $\mathrm{y}=0$
$f(x)=\frac{1}{x+2}+3$
If $p=2$ the hyperbola will shift 2 units to the left. The vertical asymptote is $x=-2$ now.
If $q=3$ the hyperbola will shift 3 units up. The Horizontal Asymptote is $y=3$ now.

Example 1 (Try yourself)

1. Consider $f(x)=\frac{4}{x-2}+4$
a. Describe the shift from the origin
b. Write down the asymptotes of the function.
2. Consider $f(x)=-\frac{4}{x-3}-1$
a. Describe the shift from the origin
b. Write down the asymptotes of the function.
3. Consider $f(x)=\frac{1}{x+2}-3$
a. Describe the shift from the origin
b. Write down the asymptotes of the function.
4. Consider $f(x)=-\frac{3}{x-1}+2$
a. Describe the shift from the origin
b. Write down the asymptotes of the function.
c. Write down $h(x)$ if $h(x)$ is the reflection of $f(x)$ about the x-axis
d. Write down $k(x)$ if $k(x)$ is the reflection of $f(x)$ about the y-axis

Answers

1.

a. 2 units right and 4 units up
b. $\mathrm{x}=2$ (Vertical Asymptote) and $\mathrm{y}=4$ (Horizontal Asymptote)
2.
a. Rewrite as $f(x)=\frac{-4}{x-3}-1$. The shift is 3 units right and 1 unit down. The -4 at the top indicates the quadrants the graph will be in. In other words, it influences the shape.

If a is positive, then the graph will be in the first and third quadrants.
$f(x)=\frac{1}{x}$

If a is negative, then the graph will be in the second and forth quadrant. $f(x)=\frac{-1}{x}$

b. $x=3$ and $y=-1$
3.
a. 2 units left and 3 units down
b. $x=-2$ and $y=-3$
4.
a. 1 unit right and 2 units up
b. $\quad \mathrm{x}=1$ and $\mathrm{y}=2$
c. $f(x)=-\frac{3}{x-1}+2$

The Reflection about x-axis leaves x as is but changes the sign of the entire function. $-f(x)$

$$
\begin{aligned}
& g(x)=-f(x)=-\left(-\frac{3}{x-1}+2\right) \\
& g(x)=\frac{3}{x-1}-2
\end{aligned} \quad \begin{aligned}
& \text { The asymptotes are now } \\
& \mathrm{x}=1 \text { and } \mathrm{y}=-2
\end{aligned}
$$

d. The Reflection about y-axis leaves y as is but changes the sign of the x-value.
$\mathrm{f}(-\mathrm{x})$
$k(x)=f(-x)=-\frac{3}{(-x)-1}+2$
$k(x)=f(-x)=-\frac{3}{-(x+1)}+2$
$k(x)=f(-x)=\frac{3}{x+1}+2$

The asymptotes are now $x=-1$ and $y=2$

