GRADE 11 Functions 2 WEBSITE NOTES

TOPIC:

- Revise the effect of *a* and *q* and investigate the effect of p on the graphs of the functions defined by:
- y = f(x) = a(x + p) + q•
- $y = f(x) = a (x + p)^2 + q$ $y = f(x) = a (x + p)^2 + q$
- $y = f(x) = \frac{a}{a} + q$ x + p

REMEMBER THE FOLLOWING	
Function change	Shift
f(x) + c	Shift the graph of f(x) up c units
f(x) - c	Shift the graph of f(x) down c units
f(x + c)	Shift the graph of f(x) left c units
f(x - c)	Shift the graph of f(x) right c units
-f (x)	Reflect the graph of f(x) about the x-axis
f (-x)	Reflect the graph of f(x) about the y-axis
f(c.x)	Compress the graph of f(x) horizontally by a factor of c.
c.f(x)	Stretch the graph of f(x) vertically by a factor of c.

PARABOLA VERTICAL SHIFTS Textbook Exercises **VERTICAL SHIFTS** Page 84 Exercise 1 (Try yourself) 2

ANSWER

REMEMBER FACTORISING INVOLVES EITHER

- **1. NORMAL FACTORISING**
- 2. COMPLETING THE SQUARE
- 3. THE FORMULA

2.7 k(x) = $8x^2 + 1$

HORIZONTAL AND VERTICAL SHIFTS

Standard Form to make it easier is $y = (x+p)^2+q$ Where p is the horizontal shift Where q is the vertical shift How would you change $y = x^2+4x+12$ into $y = (x+p)^2+q$ form COMPLETE THE SQUARE METHOD - you just not solving for x $y = (x^2 + 4x + 4) + 12 - 4$ Coefficient of b_{j^2} $y = (x+2)^2 + 8$ 2

There the shift from origin is 2 units to the left and 8 units up.

Page 85 Exercise 2 (ALREADY IN THE STANDARD FORM OF $y = (x+p)^2 + q$

1. X-INTERCEPT FORM $y = (x-4)^2 - 9$ y = (x-4)(x-4) - 9 $y = x^2 - 8x + 16 - 9$ $y = x^2 - 8x + 7$ y = (x-7)(x-1)

SHIFT $y = (\overline{x-4})^2 - 9$ Shift 4 units to the right and 9 units down Page 85 Exercise 2 (Try yourself)

2 to 4

ANSWER

