GRADE 11 Functions 2 WEBSITE NOTES

TOPIC:

- Revise the effect of *a* and *q* and investigate the effect of p on the graphs of the functions defined by:
- y = f(x) = a(x + p) + q
- $y = f(x) = a (x + p)^2 + q$
- $y = f(x) = a (x + p)^2 + q$
- $y = f(x) = \frac{a}{x+p} + q$

REMEMBER THE FOLLOWING

Function change	Shift	
f(x) + c	Shift the graph of f(x) up c units	
f(x) - c	Shift the graph of f(x) down c units	
f(x + c)	Shift the graph of f(x) left c units	
f(x - c)	Shift the graph of f(x) right c units	
-f (x)	Reflect the graph of f(x) about the x-axis	
f (-x)	Reflect the graph of f(x) about the y-axis	
f(c.x)	Compress the graph of f(x) horizontally by a factor of c.	
c.f(x)	Stretch the graph of f(x) vertically by a factor of c.	

PARABOLA VERTICAL SHIFTS

Textbook Exercises

Page 84 Exercise 1 number 1 (I put them on separate axes each time so you can see the graphs)

 $f(x) = -\frac{1}{2} x^2$

1.2

1.7 k(x) = $\frac{1}{2}$ x² -2

VERTICAL SHIFTS Page 84 Exercise 1 (Try yourself) 2

Page 85 Exercise 2 Number 1

1. $y=x^{2}+6x+9$ FACTORISE $y = (x+3)^{2}$

REMEMBER FACTORISING INVOLVES EITHER

- 1. NORMAL FACTORISING
- 2. COMPLETING THE SQUARE
- 3. THE FORMULA

Therefore, the shift from the origin is 3 units left. **ILLUSTRATED AS GRAPHS**

HORIZONTAL AND VERTICAL SHIFTS

Standard Form to make it easier is $y = (x+p)^2+q$ Where p is the horizontal shift Where q is the vertical shift How would you change $y = x^2+4x+12$ into $y = (x+p)^2+q$ form COMPLETE THE SQUARE METHOD – you just not solving for x $y = (x^2+4x+4)+12-4$ $y = (x+2)^2 + 8$ $\left(\frac{Coefficient of b}{2}\right)^2$

ADD and SUBTRACT TO NOT CHANGE THE EXPRESSION

There the shift from origin is 2 units to the left and 8 units up.

Page 86 Exercise 3 (ALREADY IN THE STANDARD FORM OF $y = (x+p)^2+q$

1. $\frac{X\text{-INTERCEPT FORM}}{y = (x-4)^2 - 9}$ y = (x-4)(x-4) -9 y = x^2 - 8x + 16 - 9 y = x^2 - 8x + 7 y = (x-7)(x-1)

<u>SHIFT</u>

 $y = (x-4)^2-9$ Shift 4 units to the right and 9 units down Page 86 Exercise 2 (Try yourself)

2 to 4