GRADE 12 TANGENTSTO

 A CURVEEquations of tangents to graphs of functions

The slope of a curve at a point is the derivative of the function at a point. Therefore the steps to find the equation of a tangent to the function at a point is as below

- E ample

Find the tangent equation to the function $f(x)=x^{3}+2 x^{2}+2 x+1$ at the point $\mathrm{x}=2$

- STEP 1

Find the Derivative of $f(x)$. Therefore find $f^{\prime}(x)$
$(x)=3 x^{2}+4 x+2$
STEP 2
Work out the Derivative at $\mathrm{x}=2$. (Point given). That means substitute $\mathrm{x}=2$ into $f^{\prime}(x)$
$\prime(2)=3(2)^{2}+4(2)+2$
$f^{\prime}(2)=22$ - THIS IS THE GRADIENT AT THE POINT $x=2$. Therefore $m=22$

The slope of a curve at a point is the derivative of the function at a point. Therefore the steps to find the equation of a tangent to the function at a point is as below CONTINUED....

Calculate the y-value from the original function when $x=2$. In other words calculate $f(2)$.
$(x)=x^{3}+2 x^{2}+2 x+1$
$(2)=(2)^{3}+2(2)^{2}+2(2)+1$
$f(2)=21$ So therefore $x_{1}=2$ and $y_{1}=21$

STEP 4

Work out the tangent equation using $y-y_{1}=m\left(x-x_{1}\right)$ at the point $\left(x_{1} ; y_{1}\right)$ THAT IS (2;21) IN THIS EXAMPLE.
$y-y_{1}=m\left(x-x_{1}\right)$
$y-21=22(x-2)$
$y=22 x-44+21$
$y=22 x-23$

QUESTIONS TO TRY ONYOUR OWN.

1. Find the equation of the tangent to the function $f(x)=x^{3}+2 x+4$ at the point where $x=1$.
2. If $g(x)=-2 x^{3}-3 x^{2}+12 x+20$, determine the equation of the tangent to g at $\mathrm{P}(-3 ; 11)$ in the form $y=\ldots$
