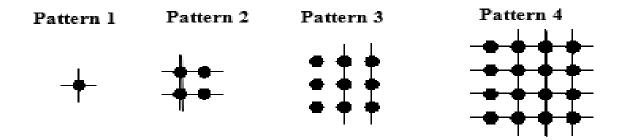
GRADE 11 INFORMAL TEST 1 ANSWERS

0


Q

 \bigcirc

MARK THE TEST ACCORDING TO THE MEMO BELOW. THE ANSWERS ARE AFTER EACH QUESTION.

QUESTION 3

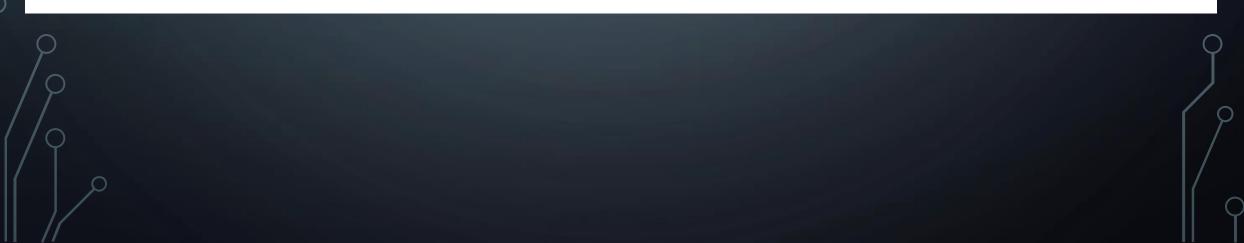
3.1 Study the following pattern formed by circles and matches:

3.1.1 Complete the table by writing down the answer next to the number of the question.

Pattern number	1	2	3	4	5
Number of circles	1	4	9	3.1.1.1	3.1.1.2
Number of matches	4	12	24	3.1.1.3	3.1.1.4

- 3.1.2 Write down a formula for the number of circles in the *n*-th pattern. (1)
 3.1.3 Determine the general term (T_n) which represents the number of matches in any pattern. (4)
- 3.1.4 Which pattern will use 1 104 matches?

(4)


(4)

QUEST	TON 3		
3.1.1.1	16	√16	
			(1)
3.1.1.2	25	✓25	
			(1)
3.1.1.3	40	√ 40	
			(1)
3.1.1.4	60	√ 60	
			(1)

O

 \square

3.1.2	$T_n = n^2$	$\checkmark T_n = n^2 \tag{1}$
-------	-------------	--------------------------------

3.1.3
$$(a + b + c =)4$$
 12 24 40 60

$$(3a + b =)8$$
 12 16 20

$$(2a =) 4$$
 4 4

$$2a = 4$$
 $3a + b = 8$ $a + b + c = 4$
 $a = 2$ $3(2) + b = 8$ $2 + 2 + c = 4$
 $6 + b = 8$ $4 + c = 4$
 $b = 2$ $c = 0$
 $\therefore T_n = 2n^2 + 2n$
 $\checkmark T_n = 2n^2 + 2n$
 $\checkmark T_n = 2n^2 + 2n$

5.1.4
$$2n^{2} + 2n = 1\ 104$$
$$2n^{2} + 2n - 1\ 104 = 0$$
$$n^{2} + n - 552 = 0$$
$$(n - 23)(n + 24) = 0$$
$$n = 23 \text{ or } n \neq -24$$
$$NA$$
$$T_{23} = 1\ 104$$

 \bigcirc

 \bigcirc

 $\checkmark T_n = 1\,104$ ✓ Standard form ✓ Factors or using of quadratic formula ✓ Choose n = 23

3.2 Calculate:
$$\frac{3}{2} \times \frac{4}{3} \times \frac{5}{4} \times \dots \times \frac{2009}{2008} \times \frac{2010}{2009}$$
.

3.3 Study the following pattern:

GRADE11GRADE11GRADE11GRADE11......

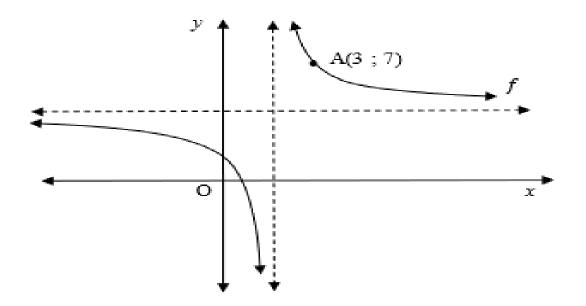
(2)

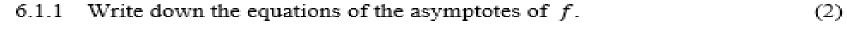
(2)

[17]

Which letter or number will be the 388th term in the pattern?

3.2	$\frac{3}{2} \times \frac{4}{3} \times \frac{5}{4} \times \dots \times \frac{2\ 009}{2\ 008} \times \frac{2\ 010}{2\ 009}$			ଟ
	$=\frac{1}{2}\times\frac{2\ 010}{1}$	✓Simplify		
	= 1 005	√ 1 005	(2)	
3.3	Given pattern: GRADE11GRADE11GRADE11			
	<i>GRADE</i> 11 = 7 letters and numbers			
	$\frac{388}{7} = 55$ with a remainder of 3	✓Method		
	⁷ This means that we will have 55 <i>GRADE</i> 11 parts. Counting 3 letters onwards gives an <i>A</i> .			
	∴ 388th term is a <i>A</i> . Answer only: full marks	$\checkmark A$ (answer)	(2)	(
			[17]	


0


 \square

QUESTION 6

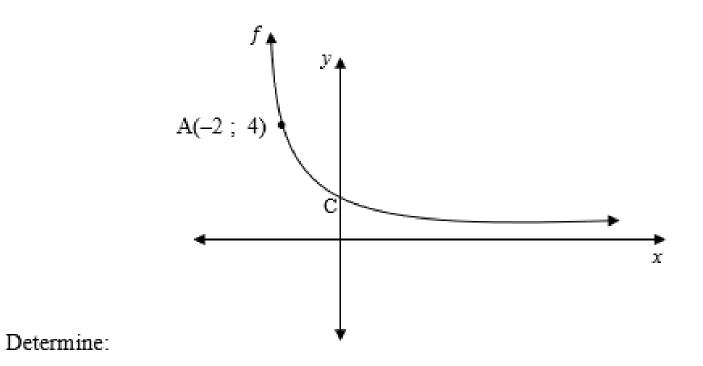
6.1 The diagram below represents the graph of $f(x) = \frac{p}{x-2} + 4$.

A(3;7) is a point on the graph of f.

6.1.2 Show that p = 3.

- 6.1.3 Determine the equation of h which is formed when f is shifted three units downwards and one unit to the left. (2)
- 6.1.4 For which value(s) of x is f decreasing?

(2)


(2)

QUES	TION 6		
	x = 2	$\checkmark x = 2$	
	<i>y</i> = 4		(2)
6.1.2	$(3;7)$ $\therefore 7 = \frac{p}{3-2} + 4$	✓ Sustitute $x = 3$ and	
		<i>y</i> = 7	
	7 = p + 4	✓Simplify	
	p = 3	1 -	(2)
6.1.3	$\frac{p=3}{h(x)} = \frac{3}{x-2+1} + 4 - 3$		
	$h(x) = \frac{3}{x-1} + 1$	$\checkmark \frac{3}{x-1}$ $\checkmark +1$	(2)
6.1.4	For $x \in \mathbb{R}$; $x \neq 2$	$\checkmark x \in \mathbb{R}$	
		$\checkmark x \neq 2$	(2)

6.2 The diagram shows the graph of $f(x) = a^x$.

The point A(-2; 4) lies on the graph. C is the y-intercept of f.

6.2.1 the value of a.

6.2.2 the coordinates of C.

6.2.3 the average gradient of the curve between the points A and C.

(2)

(2)

(3)

[15]

6.2.1	$4 = a^{-2}$		
	$\left(\frac{1}{2}\right)^{-2} = a^{-2}$	✓Method	
	$a = \frac{1}{2}$	$\checkmark a = \frac{1}{2}$	
	2	L.	(2)
6.2.2	C(0;1)		
		$\checkmark y = 1$	(2)
6.2.3	A(-2; 4) and $C(0; 1)$		
	Average gradient = $\frac{y_2 - y_1}{x_2 - x_1}$	✓Correct formula	
	Average gradient = $\frac{1-4}{0-(-2)}$	 ✓ Substitute correctly 	
	Average gradient $=\frac{-3}{2}$	$\checkmark \frac{-3}{2}$	
		-	(3)
			[15]

9

 \bigcirc