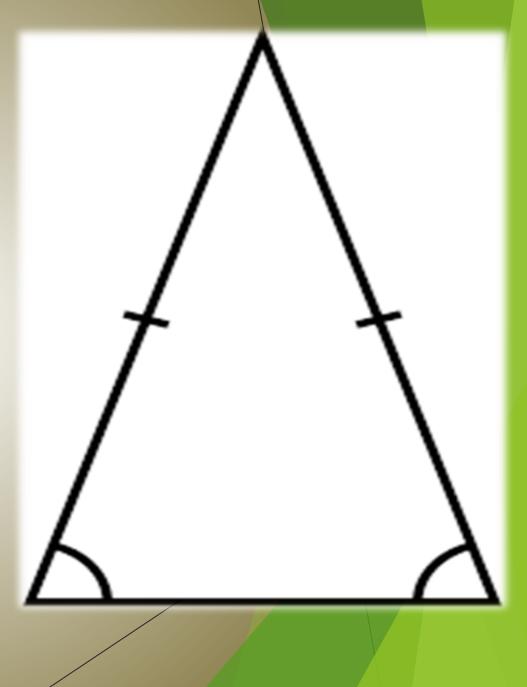
CHAPTER 3: SHAPE AND SPACE GEOMETRY 3.1 Geometry of 2D shapes 3.2 Geometry of 3D Objects 3.3 Geometry of straight lines 3.4 Transformation geometry **3.5 Construction of Geometric Figures**

1.Equilateral Triangles

*all sides equal*all angles = 60°

2. Isosceles Triangles

*2 sides equal
*Base angles of equal sides are equal



3. Right - angled Triangles

* 1 angle = 90°
* The side opposite the 90° is the largest side & called the hypotenuse

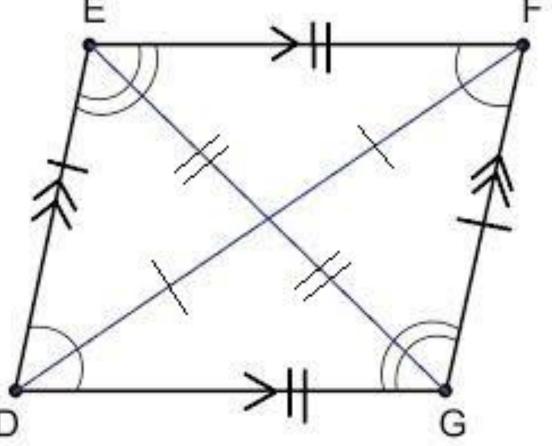
Hypotenuse

Classifying Triangles Song

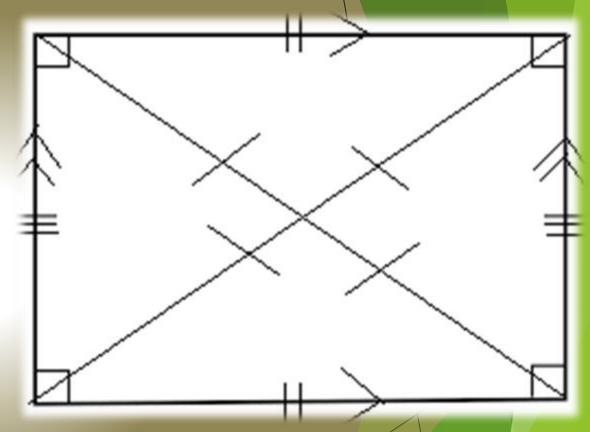
Quadrilaterals

1.Parallelogram

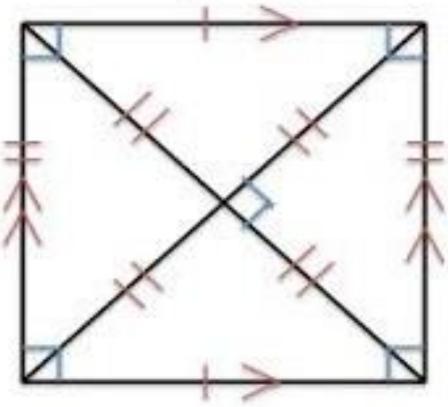
* Opposite sides parallel
* Opposite sides equal
* Opposite angles equal
Diagonals bisect each other

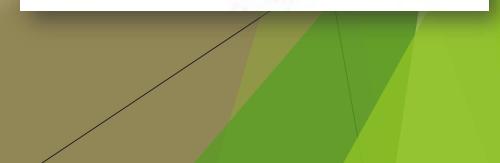


* Opposite sides parallel
* Opposite sides equal
* All 4 angles equal = 90°
* Diagonals equal
* Diagonals bisect each other



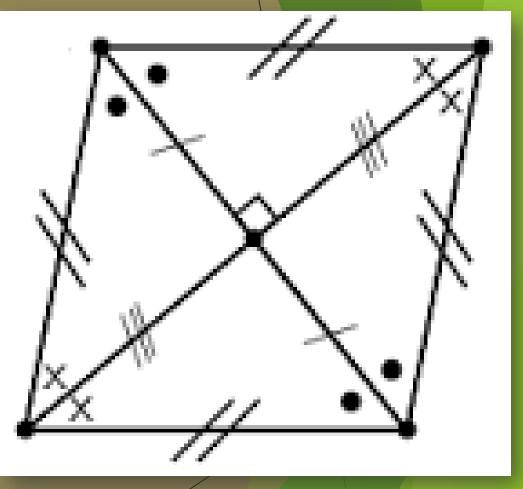
* Opposite sides parallel
* Opposite sides equal
* All 4 angles equal = 90°
* Diagonals bisect each other at 90°



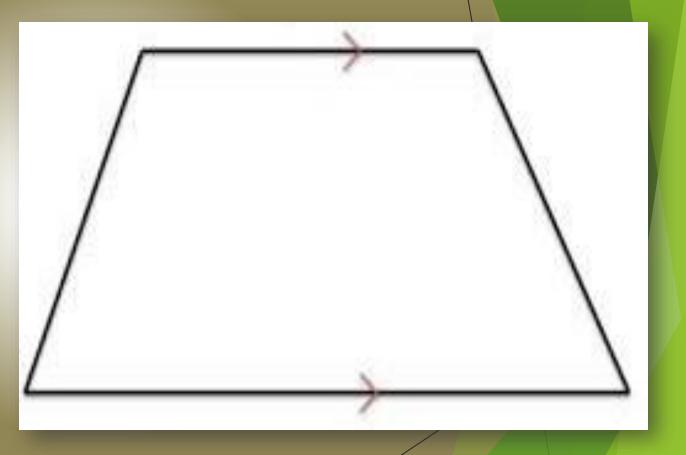


4. Rhombus

*Opposite sides parallel *All 4 sides equal *Opposite angles equal * Diagonals bisect each other at 90° * Diagonals bisect the angles of vertices

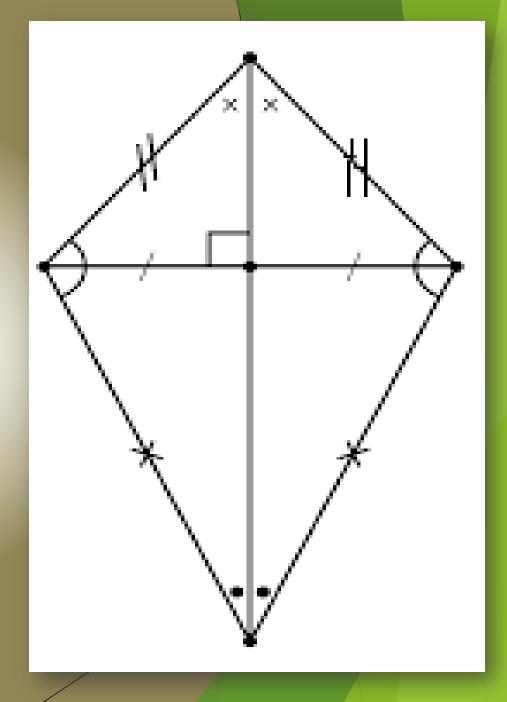


*One pairs of opposite sides parallel



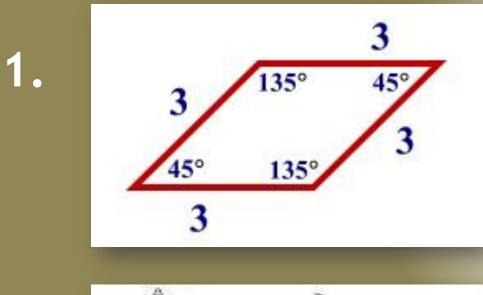
* Two pairs of adjacent sides equal
* Equal angles opposite line of symmetry

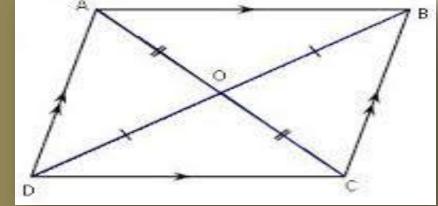
Quadrilateral song



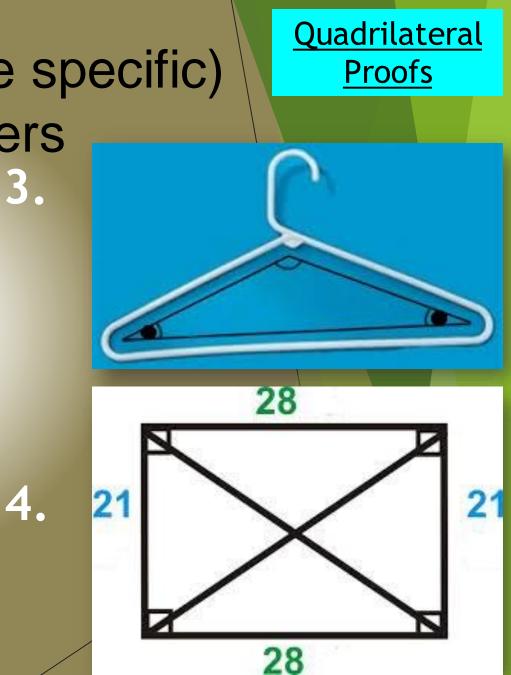
3.

Identify the following shapes (be specific) and give reasons for your answers



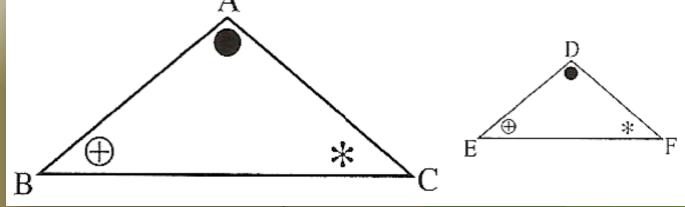


2.



*Triangles are said to be similar if:

- All pairs of corresponding angles are equal
- i. All pairs of corresponding sides are in the same proportion $\triangle ABC \parallel DEF$ ie. $\frac{AB}{DE} = \frac{BC}{EF} = \frac{AC}{DF}$

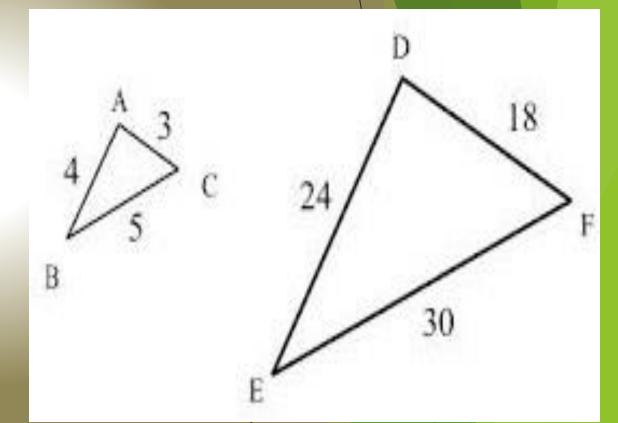


1. Prove that \triangle ABC III \triangle DEF:

$$\frac{AB}{DE} = \frac{BC}{EF} = \frac{AC}{DF}$$

(sides in proportion)

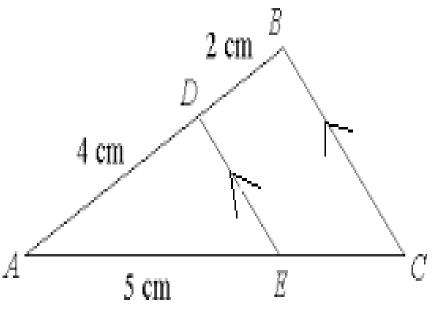
 $\therefore \Delta ABC \parallel \Delta DEF$



2.1 Prove that \triangle ADE III \triangle ABC: In \triangle ADE and \triangle ABC

i. Â is common (given) ii. D=B (corresponding ∠'s; DE II BC) iii. Ê=Ĉ (corresponding ∠'s; DE II BC

$\therefore \Delta ADE III \Delta ABC$



2.2 Determine the length of EC:

In \triangle ADE III \triangle ABC (given)

$$\therefore \frac{AD}{AB} = \frac{AE}{AC} \text{ (sides in proportion)} \qquad A \xrightarrow{5 \text{ cm}} E$$

$$\frac{4}{4+2} = \frac{5}{5+EC} \leftarrow \text{Fill in lengths from diagram}$$

2 cm

4 cm

```
4(5 + EC) = 6 \times 5 \leftarrow \text{cross multiply}

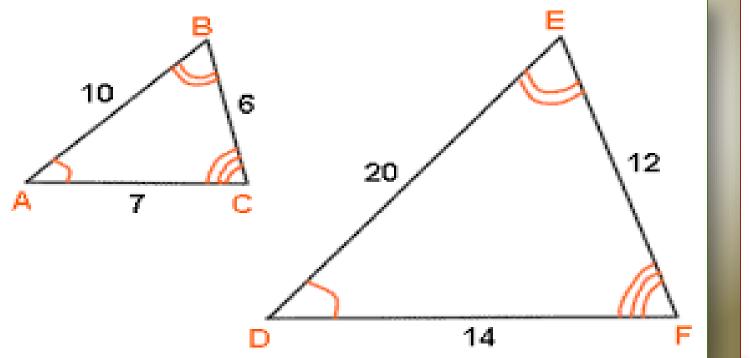
20 + 4EC = 30

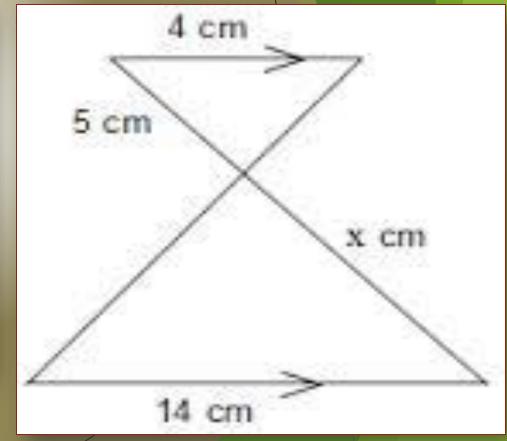
4EC = 10

EC = 2.5 \text{ cm}
```


Similarity Example Problems

1. Prove that \triangle ABC III \triangle DEF **2.** Solve for x

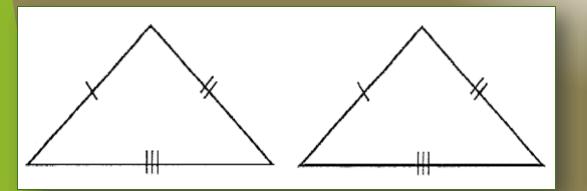


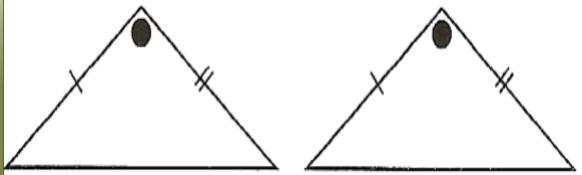


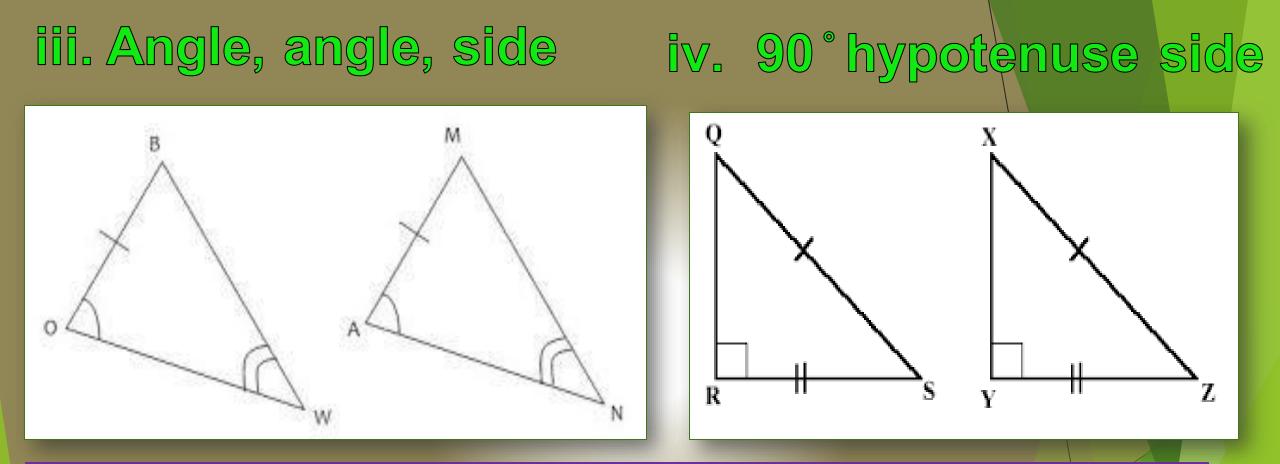
* Triangles are said to be congruent if they have the same shape and size: * There are 4 cases for congruency:

i. Side, Side, Side

ii. Side, Angle, Side [NOTE! Angle must be included!]



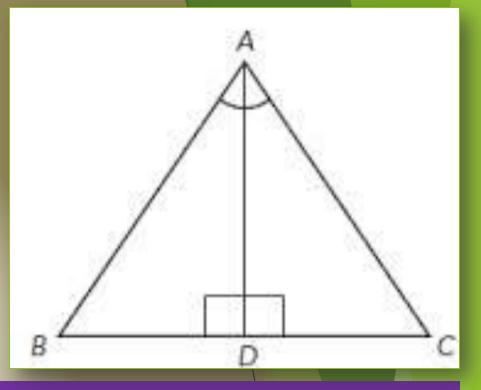




<u>Note!</u> the order of the vertices of a triangle is NB ie. \triangle ABC III \triangle DEF is not necessarily the same as \triangle ABC III \triangle EDF!

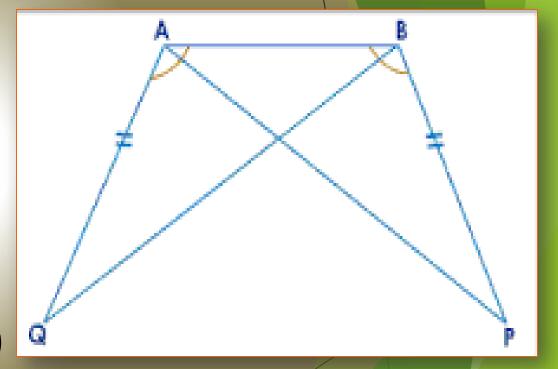
Examples

1. Prove that \triangle ABC III \triangle ACD: Δ ABC and Δ ACD **BÂD=CÂD** (given) ii. BDA=CDA (given) iii. AD is common $\therefore \Delta ABC III \Delta ACD (a,a,s)$



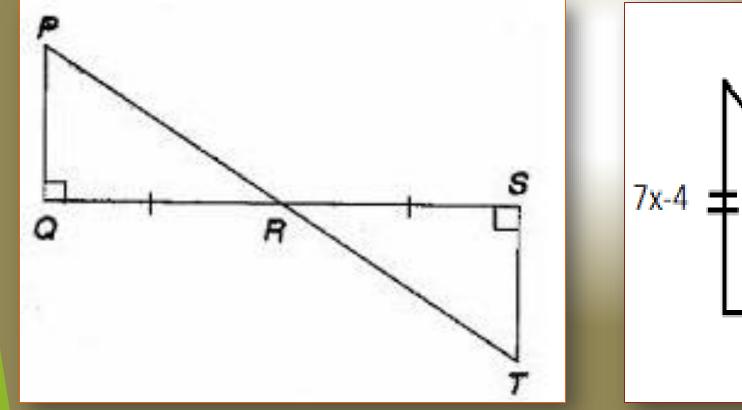
Note! Always remember to state the case for congruency! 2. Determine the length of QB, if PA = 7cm $\triangle ABQ$ and $\triangle BAP$

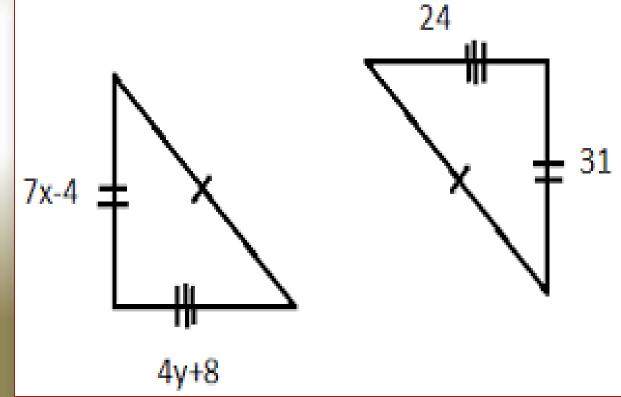
- i. AQ=BP (given)ii. A=B (given)
- iii. AB is common
- $\therefore \Delta ABQ \equiv \Delta BAP (s,a,s)$
- ∴ QB=PA (from congruency)
- ∴ QB=7cm (given PA=7cm)



Congruency Example Problems

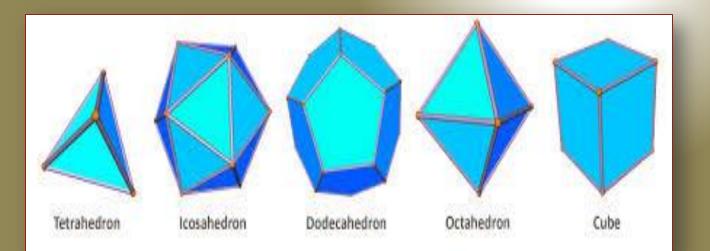
1. Prove that2. So \triangle PQR $\equiv \triangle$ TSRx &

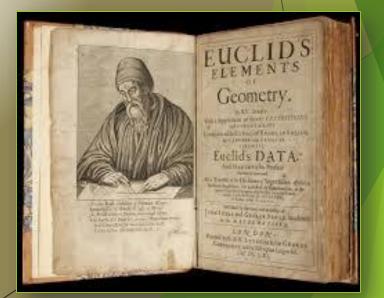




3.2 Geometry of 3D- objects

- Platonic solids (aka regular polyhedral) have congruent faces (sides) made up of regular polygons
- There are 5 platonic solids
- Proved by Euclid in his book, "Elements"



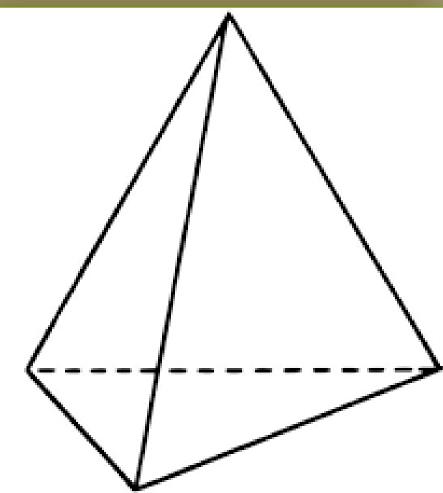


<u> Platonic Solids - Part 1</u>

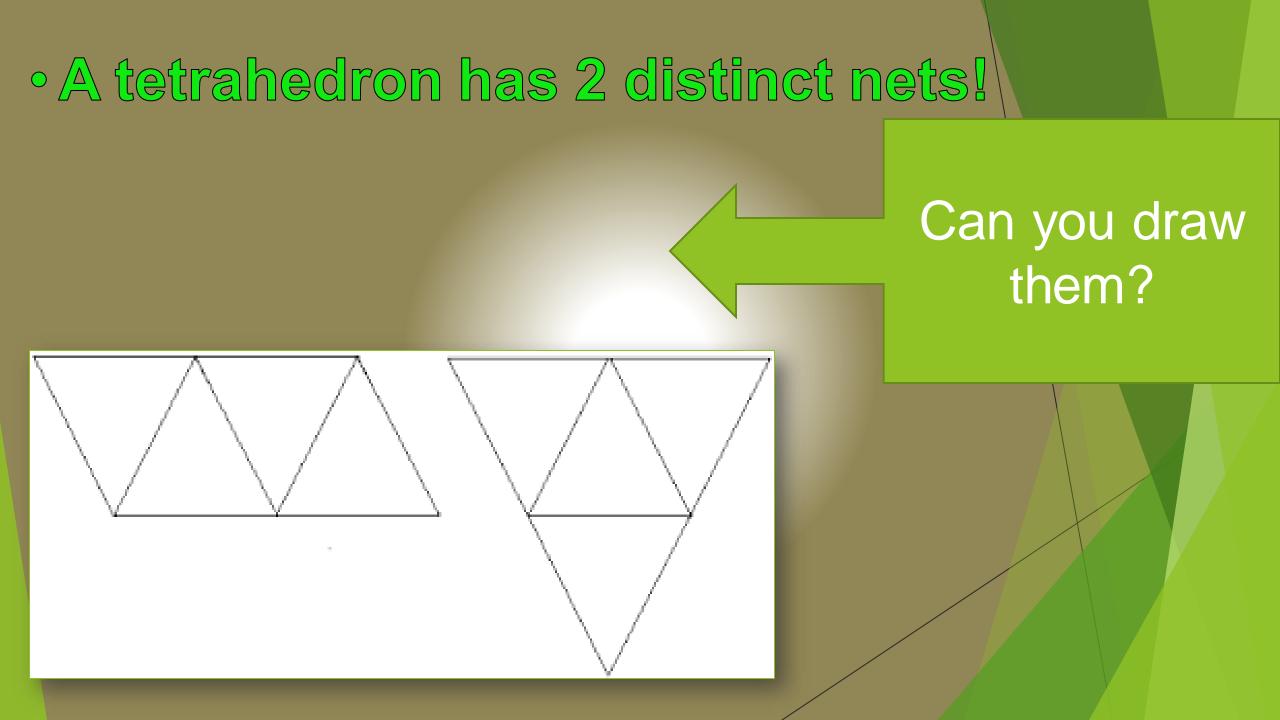
<u>Platonic Solids - Part 2</u>

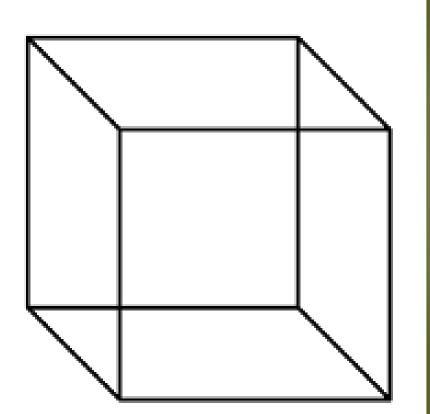
Properties of platonic Solids

1. Tetrahedron



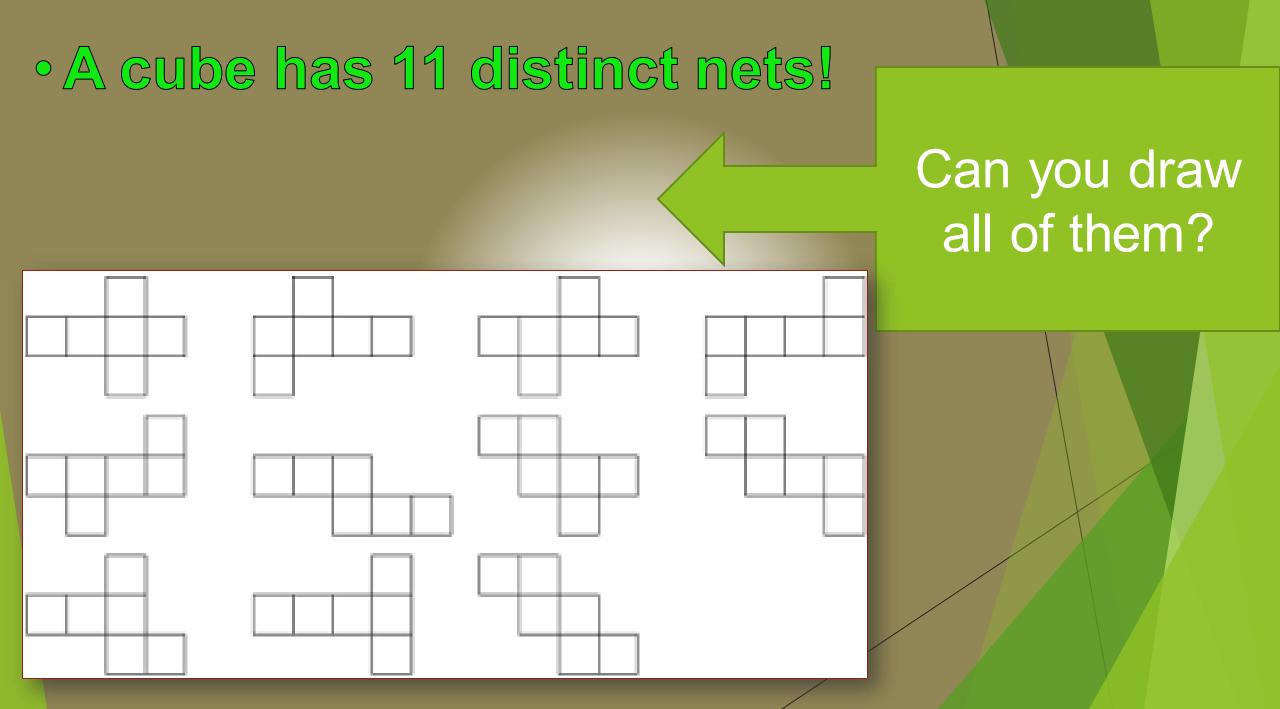
No. of faces:
4 equilateral triangular faces
No. of vertices: 4
No. of edges: 6



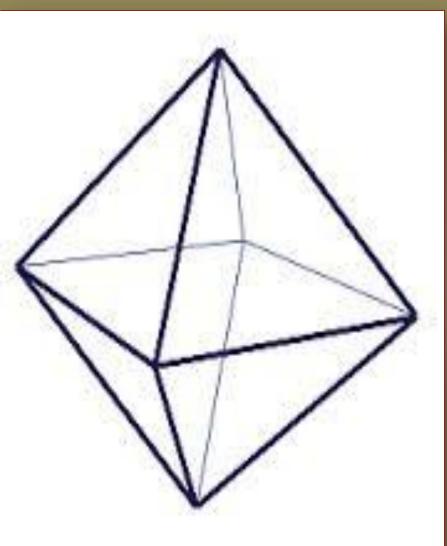


• No. of faces: 6 square faces(faces meet at 90°) No. of vertices: 8

• No. of edges 12



3. Octahedron



No. of faces:
 8 equilateral triangular faces

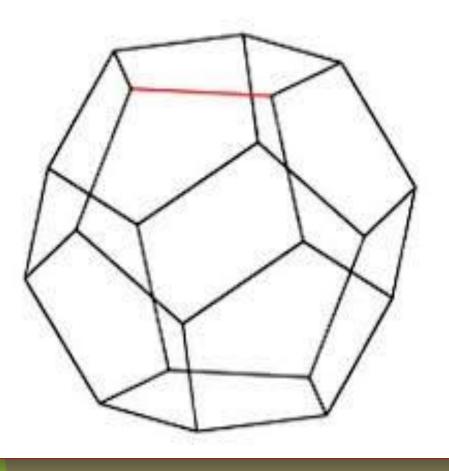
No. of vertices: 6

No. of edges: 12

• A octahedron has 11 distinct nets!

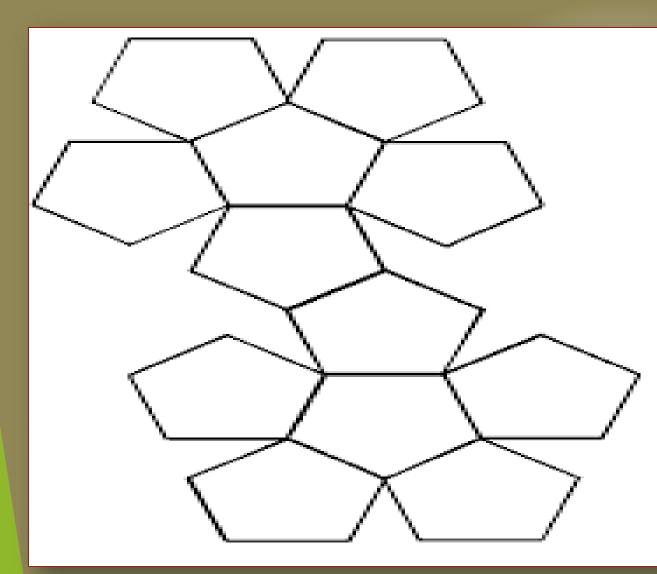


4. Dodecahedron



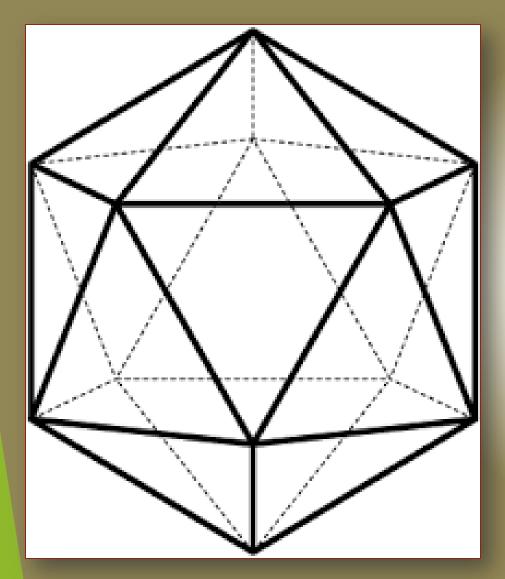
- No. of faces:
 12 pentagonal
 faces
- No. of vertices: 20
- No. of edges: 30

• A dodecahedron has 43 380 distinct nets!



Can you draw one?

5. Icosahedron

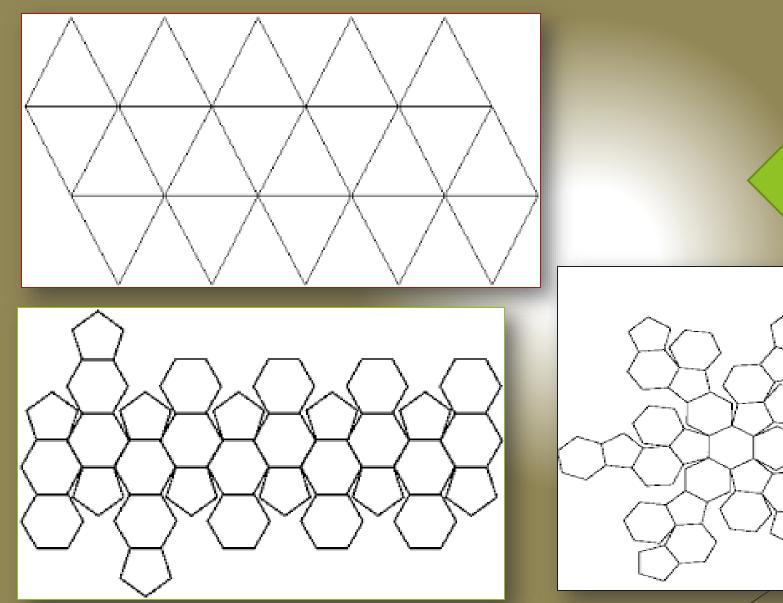


 No. of faces:
 20 equilateral triangular faces

• No. of vertices: 12

• No. of edges: 30

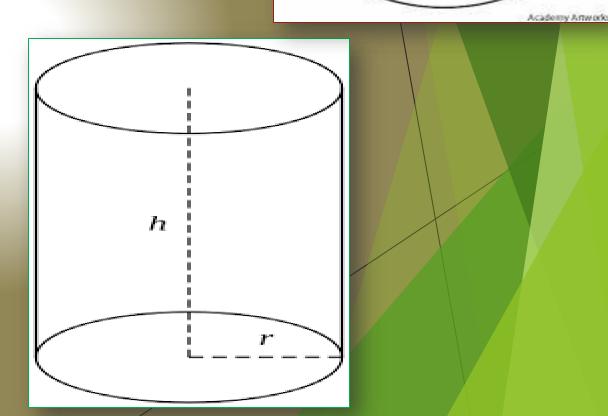
• An Icosahedron has 43 380 distinct nets!



Can you draw one?

 Are round solid figures, with every point on its surface equidistant from its centre

 Cylinders are closed solids, that have 2 parallel (circular or elliptical) base connected by a curved surface



Platonic Solids Song

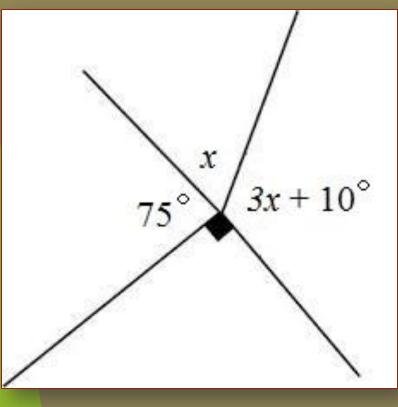
Your turn to be creative! Make your own platonic solid models by folding paper...

3.3 Geometry of Straight lines

Angle Relationships

1. Angles around a point add up to 360.

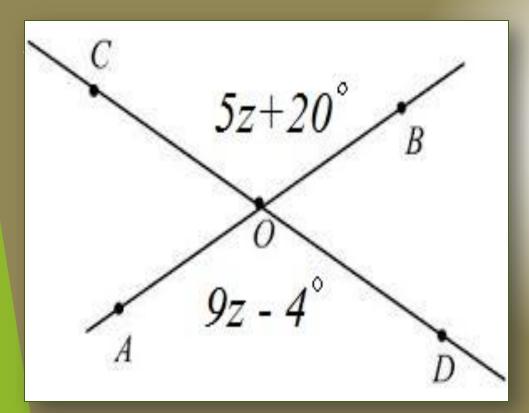
E.g. solve for



$x + 75^{\circ} + 3x + 10^{\circ} + 90^{\circ} = 360^{\circ}$ (angles around a point) $4x + 175^{\circ} = 360^{\circ}$ $4x = 185^{\circ}$ $x = 46.25^{\circ}$ Angles around a

Point Examples

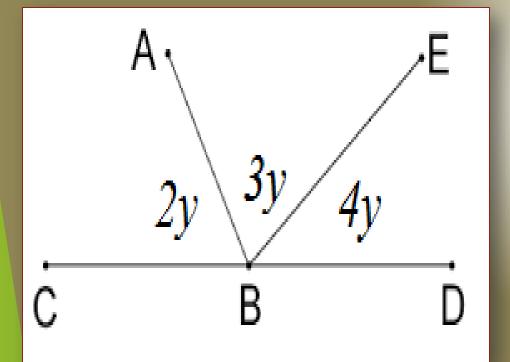
3. Vertically opposite angles are equalE.g. solve for



 $5z + 20^{\circ} = 9z - 4$ (Vert.0pp $\angle's$) $5z - 9z = 4^{\circ} - 20^{\circ}$ $-4z = -24^{\circ}$ $z=6^{\circ}$

<u>Vertically</u> <u>Opposite Angles</u> <u>Examples</u>

2. Adjacent on a straight line add up to 180°E.g. solve for y:



 $2y + 3y + 4y = 180^{\circ}$ (Adj. angles on a str. line) $9y = 180^{\circ}$ $y = 20^{\circ}$

<u>Angles on a Straight</u> <u>Line Examples</u>

∠y

1. Solve for y

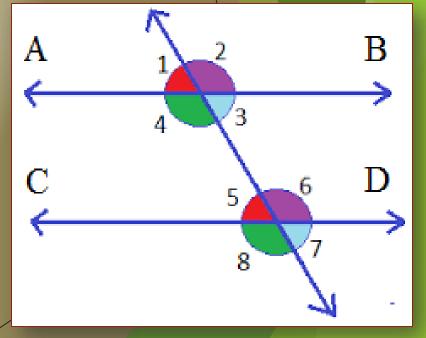
* Don't forget to write reasons for statements!

3. When parallel lines are cut by a transversal, then:

3.1. Corresponding angles are equal E.g. if 4 = 120°, determine 8

8=4 (**corresp.** ∟'*s*; *AB* ∥ *CD*)

=120°



F shape

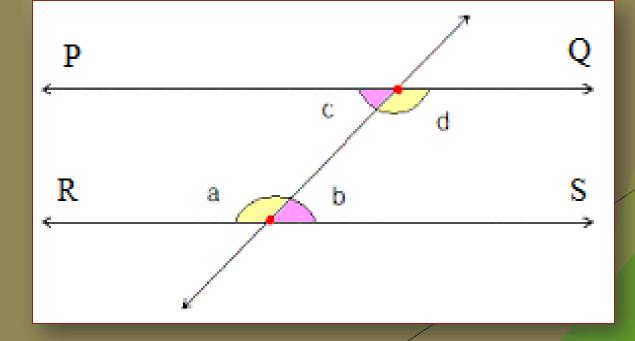
3.2. Alternate angles are equai

E.g. if c =35°, determine b.

Z or N shape

b=c (alt. $\ \ S PQ \parallel RS$)

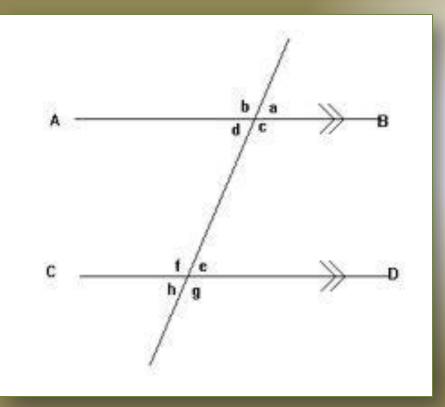
= 35°

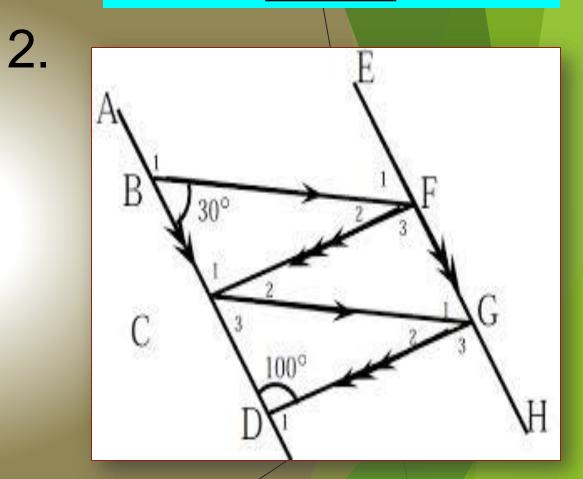


3.3. Co-interior angles add up to 180° ∐ or ⊏ E.g. if a =130°, determine b. shape $a + b = 180^{\circ}$ (co - int. \angle 's; DE || FG) $130^{\circ} + b = 180^{\circ}$ $b = 50^{\circ}$ D F

Angles formed by Parallel Lines & Transversals Example Problems

1. Solve for the unknown





* Don't forget to write reasons for statements!

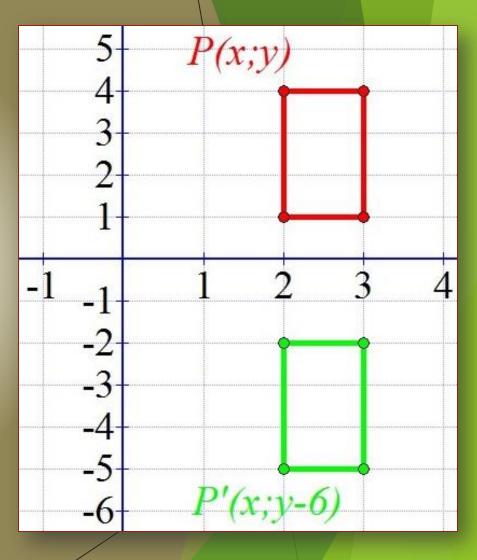
3.4 Transformation Geometry

- ⇒ Transformations occur when a point or object is moved
- ⇒ If a figure's shape & size remain the same, the transformation is said to be rigid
- ⇒ Rigid transformations include: translations, reflections & rotations
- ⇒ The transformed point or object is called the image ⇒ Notation: $P(x, y) \rightarrow P'(x \dots; y \dots)$ transform point P' where
 - the general transformation rule is applied to (x; y)

Translations

- ⇒ These transformations include:
 - . Vertical translations up & down movements
 - Only affect the *y*-coordinates

• $P(x; y) \rightarrow P'(x; y \pm a)$ [where *a* is a constant]

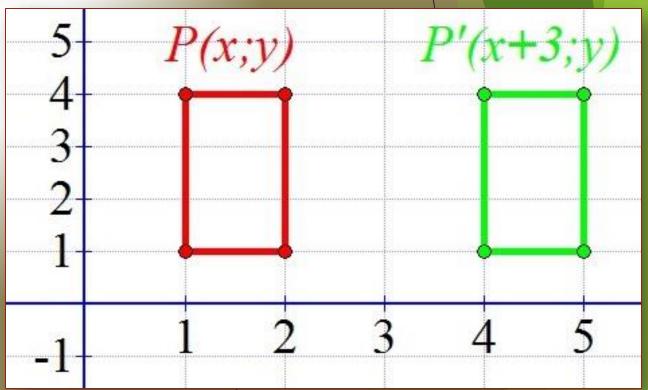


ii. Horizontal translations

- Left & right movements
- Only affect the x-coordinates

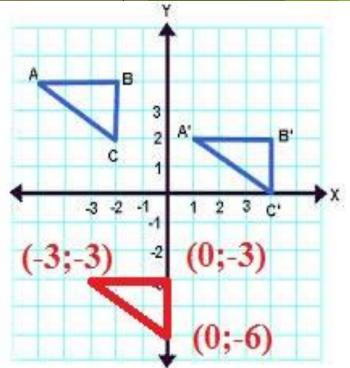
• $P(x; y) \rightarrow P'(x \pm a; y)$ [where *a* is a constant]

Translating Shapes



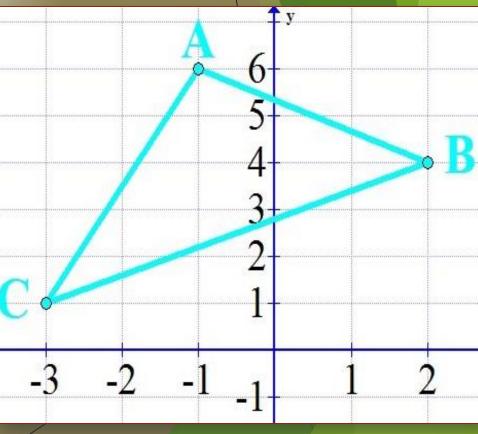
1. Describe the transformation that has occurred ΔABC has moved 2 units down and 6 units to the right

2. Write down the transformation rule $P(x; y) \rightarrow P'(x + 6; y - 2)$



3.Draw the transformed triangle if it is translated 2 units to the right and 7 units down

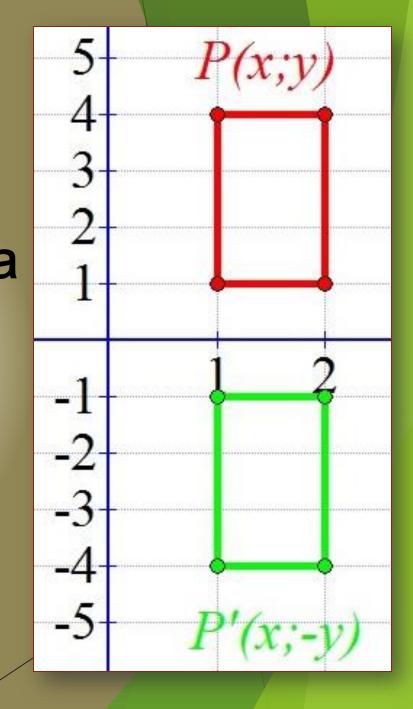
- 1. Draw the image of ABCD, if it is translated 4 units to the left and 5 units up
- 2. Write the transformation rule described in Question 1



2. Reflections \Rightarrow These transformations include: **Reflections** about the *x* axis The transformed point or object is a mirror image across a horizontal line of y = 0

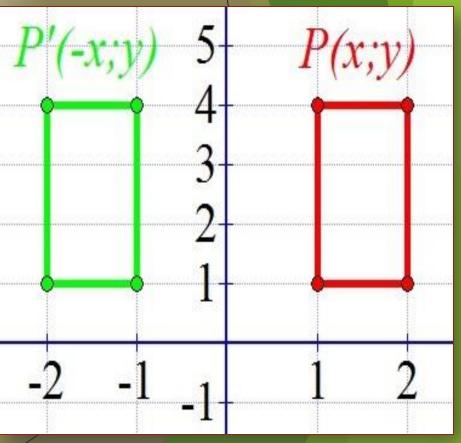
i.e the x axis

x co ordinates stays the same, *y* co ordinates changes sign
P(x; y) → P'(x; y)



ii. Reflections about the y axis

- The transformed point or object is a **mirror image** across a **vertical line of** x = 0 **i.e** the y - axisP'(-x,y) = 5
- *x* co ordinates change sign, *y* co ordinates stays the same
 P(x; y)→ P'(-x; y)

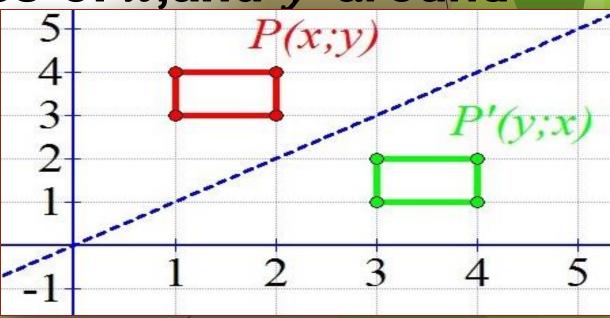


iii. Reflections about the line x = y

 The transformed point or image is a mirror image across a diagonal line that intersects the origin

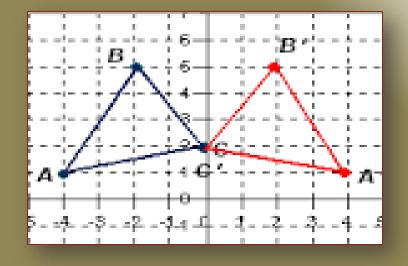
$$(0 = 0)$$
 - ie. The line $x = y$
i.e the $y - axis$

• Swop the co ordinates of x, and y around • $P(x; y) \rightarrow P'(-x; y)$



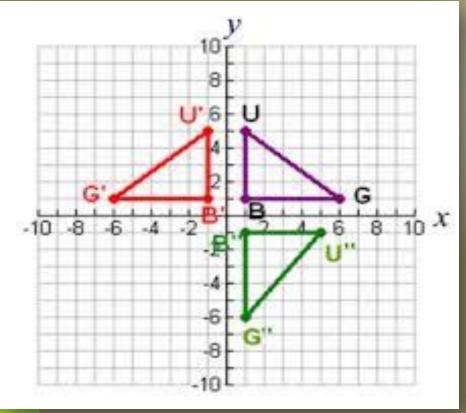
For each of the following:

ie. me line of reflection **Describe the transformation** ii. iii. Write down the line of symmetry rule Write down the general transformation rule

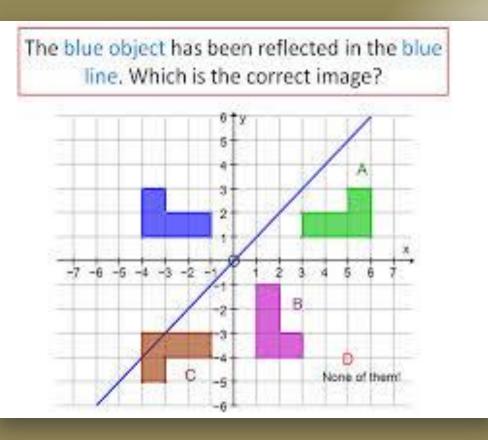


reflect about the y axis I. *ii.* x = 0iii. $P(x; y) \rightarrow P(-x; y)$

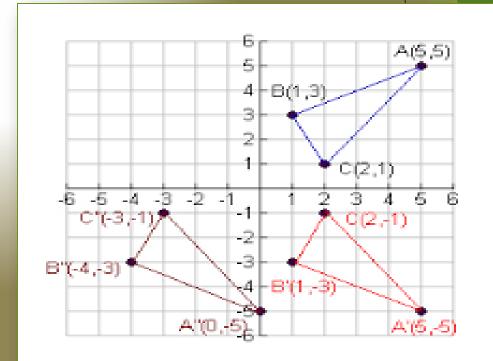
2. For $U'G'B' \rightarrow U''G''B''$ (ie.red to green transformation)



For U'G'B' \rightarrow U"G"B": i. reflect about the y = x line *ii.* y = xiii. $P(x; y) \rightarrow P'(-x; y)$



2.Describe the transformations and write down the general rule for transformations from $ABC \rightarrow A'B'C \rightarrow A"B"C"$



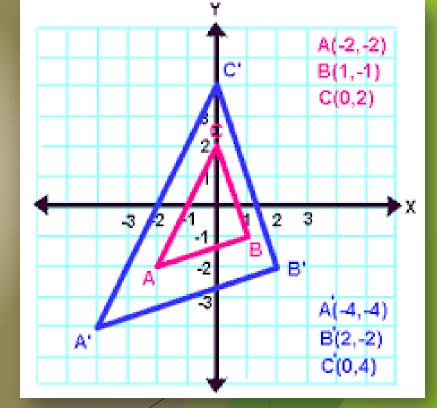
 \Rightarrow Enlargement involve the enlarging of an object, in the same proportion by a factor called the scale factor The size of the angles stay the same; while object get bigger • $P(x; y) \rightarrow P'(ax; ay)$ [where a is a constant and a > 1]

$\triangle ABC \rightarrow A'B'C$ has been enlarged by a factor of 3 P'(3x;3y)P(x;y)

 Each co-ordinate is multiplied by 3 e.g. $A(1;1) \rightarrow A'(3;3)$ $\therefore P(x;y) \rightarrow P'(x;3y)$ The area will be 3 times longer The perpendicular will be $(3)^2 = 9$ times bigger ie. $(scale factor)^2$

Given the following transformation:

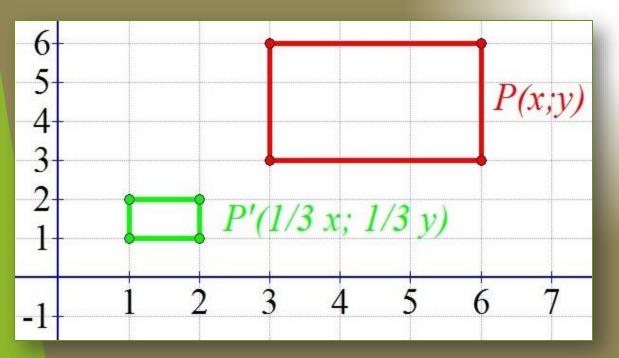
- 1. Describe the transformation
- 2. Write down the general rule for the transformations
- 3. Draw $A"B"C" \rightarrow A'B'C$ is
 - enlarged by a factor of 4
- 4. By how many times larger will the area be from $A'B'C \rightarrow A"B"C"$



Reduction

- ⇒ Reductions involve reducing each length of an object, in the same proportion by a factor called the scale factor
- The size of the angles stay the same; while object get smaller
- $P(x; y) \rightarrow P'(ax; ay)$ [where a is a constant and 0 < a < 1]

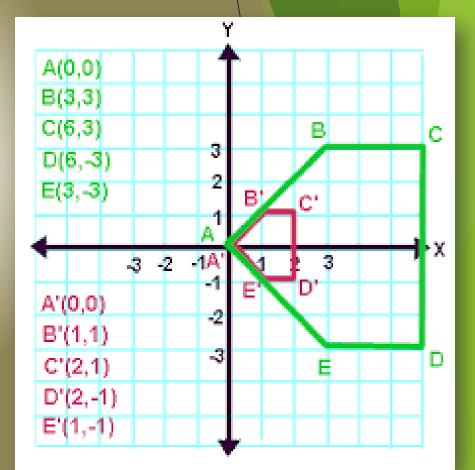
$\Delta ABC \rightarrow A'B'C$ has been enlarged by a factor of 3



- Each co-ordinate is multiplied by 3
 e.g. A(1;1)→ A'(3;3)
- The perimeter will be 3
 times shorter
 - The area be (3)²=9 times smaller ie. (scale factor)²

Given the following transformation:

- 1. Describe the transformation
- 2. Write down the general rule for the transformation.
- 2. By what factor will original shape and images perimeter and area be reduced by?

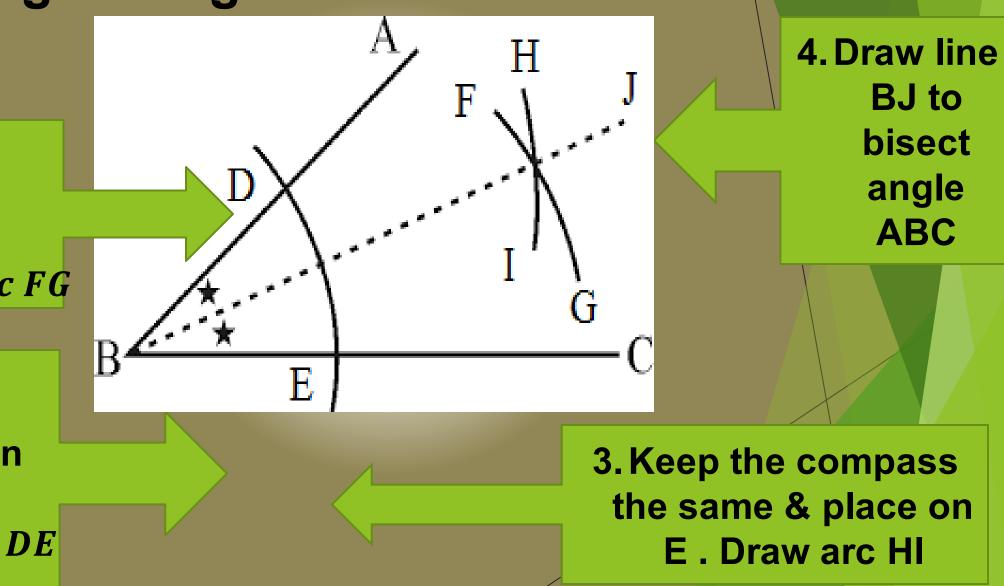


3.5 Construction of Geometric Figures

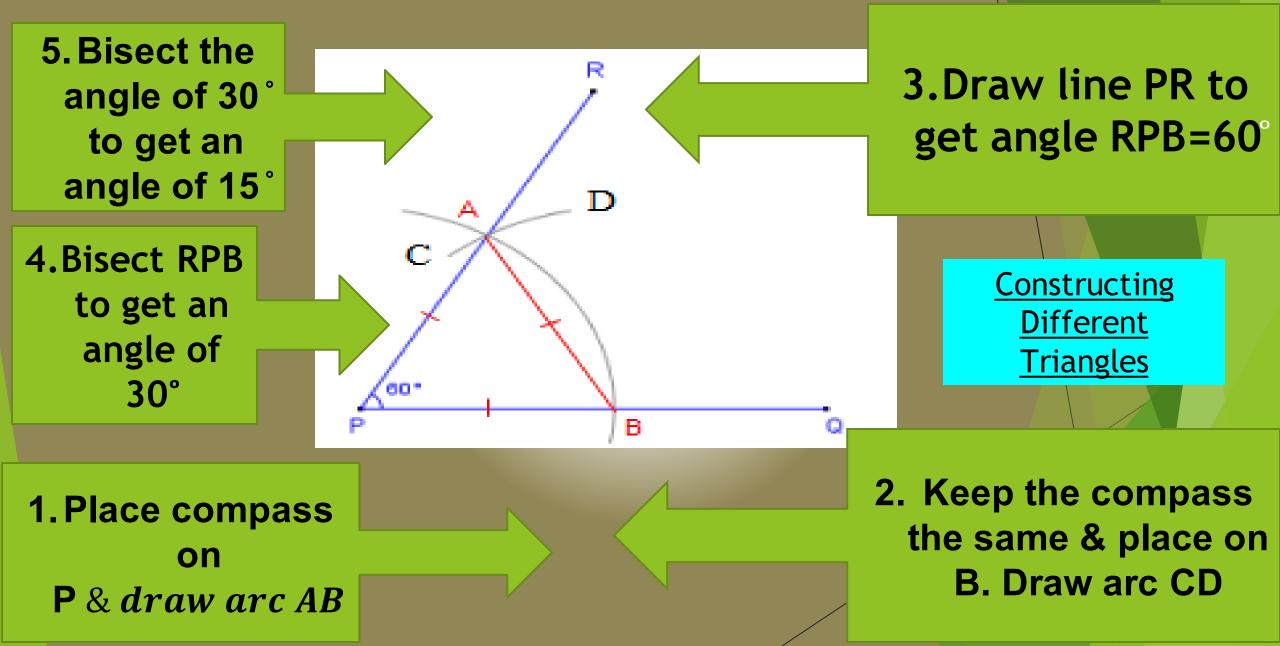
1.Bisecting an angles

2. Place compass on D & draw arc FG

1. Place compass on B & draw arc DE



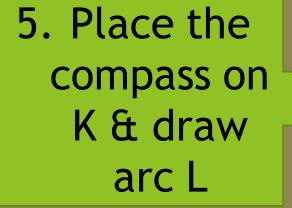
2. Constructing Angles: 60 ;30 &15°



Ν

М

3. Place the



1.Draw line KJ

2.Measure the first given length on a compass (using a ruler)

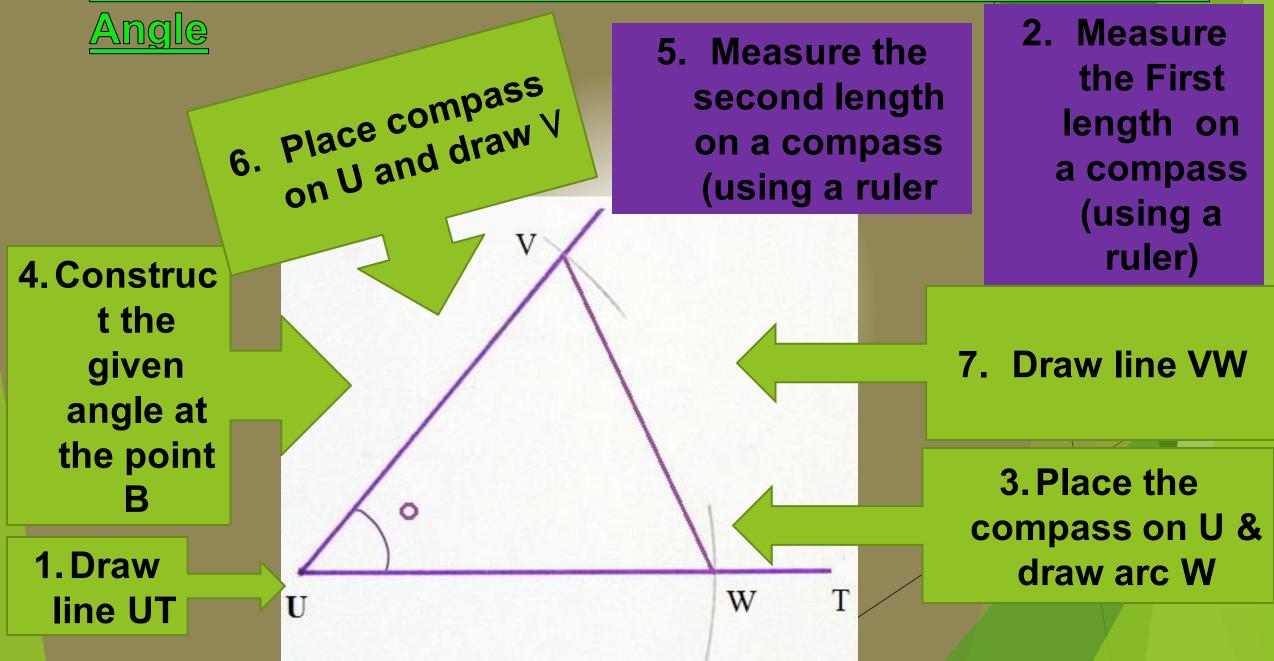
4.Measure the second given length on a compass (using a ruler)

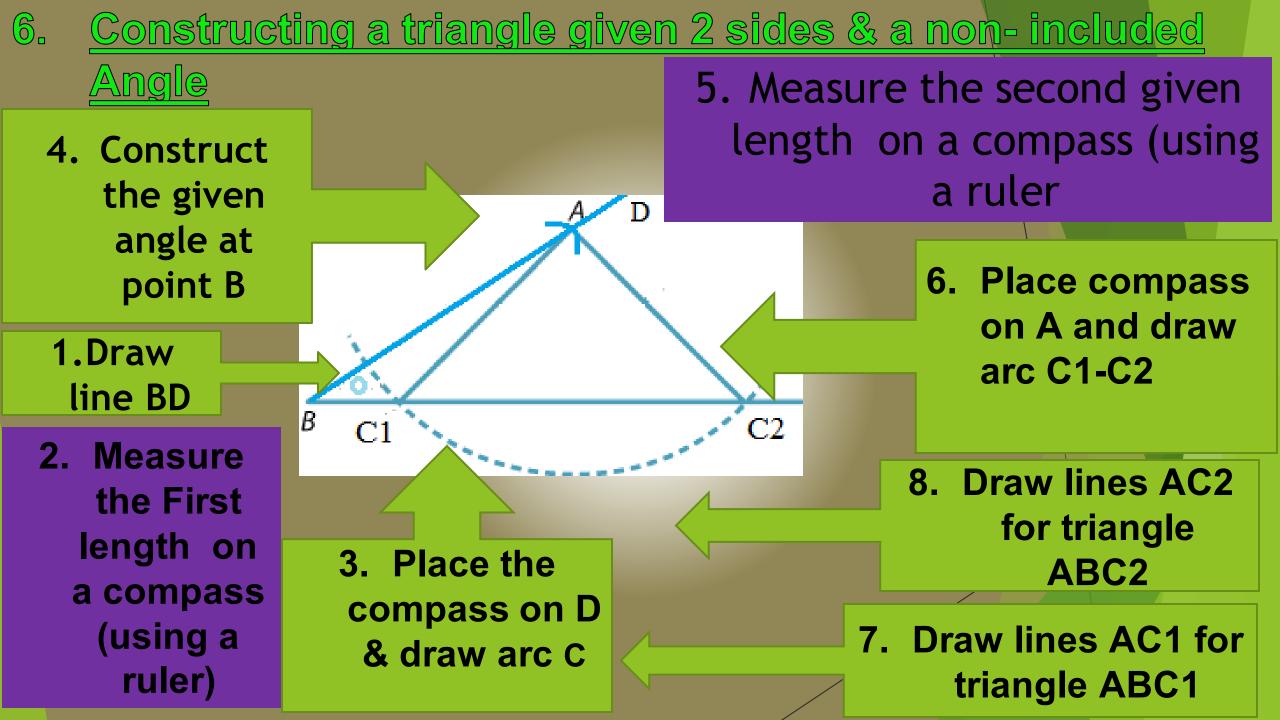
6.Measure the third given length on a compass (using a ruler)

7.Place the compass on M & draw arc N compass on K & draw arc

8. Join points to form Δ

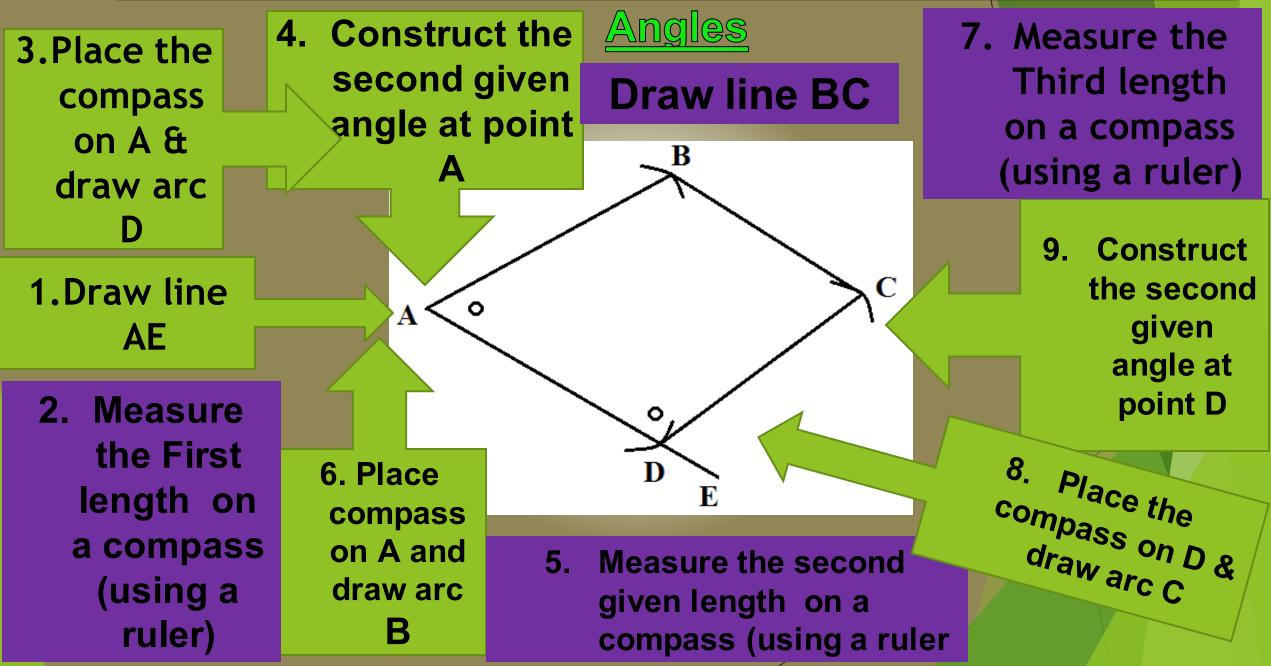
4. Constructing a triangle given 2 sides & a Non-Included





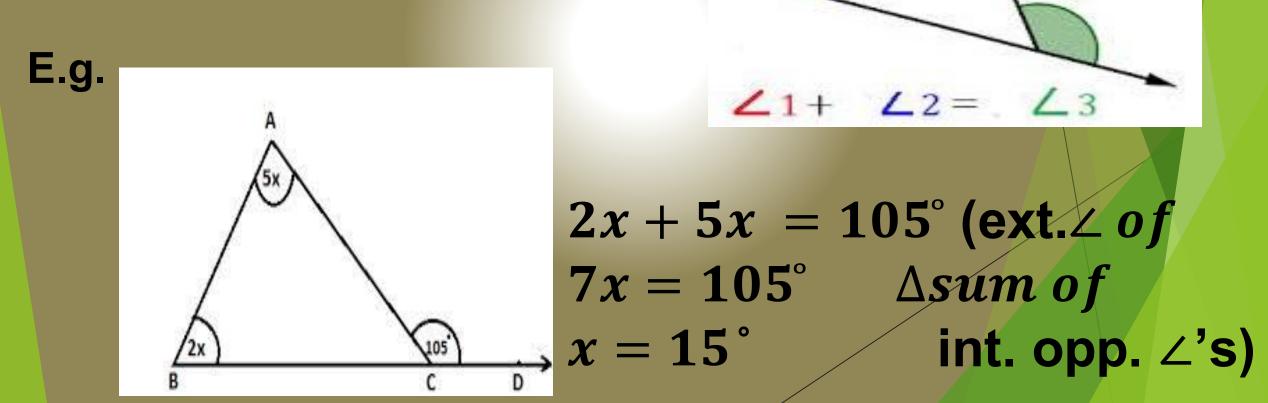
Constructing Triangles & Quadrilaterals

6. Constructing a Quadrilateral given 3 sides & 2 Included



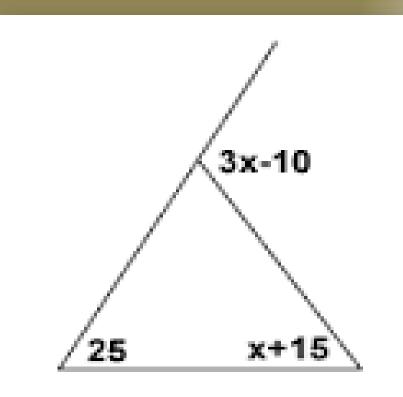
Exterior Angle of a triangle

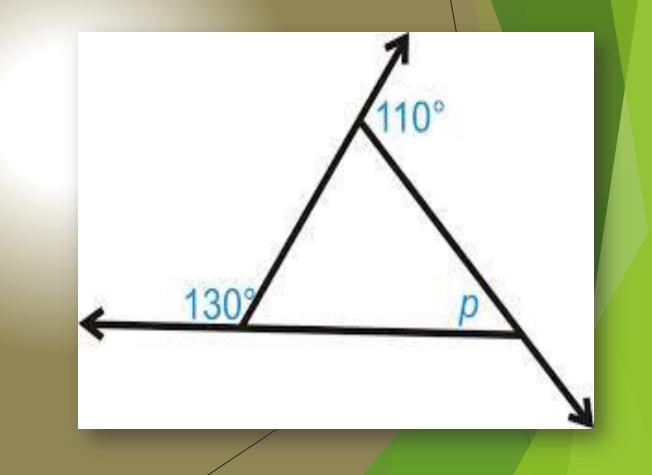
The exterior angle of a triangle = the sum of the interior opposite angles



1. Solve for *x*

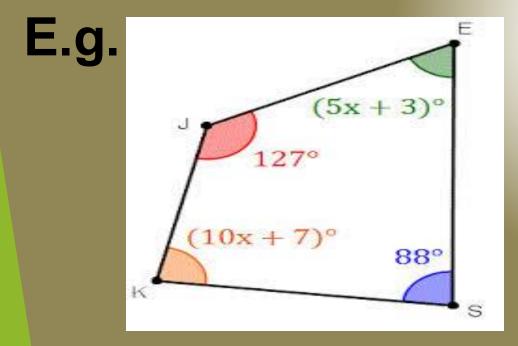
2. Solve for *p*





Interior Angles of a polygon

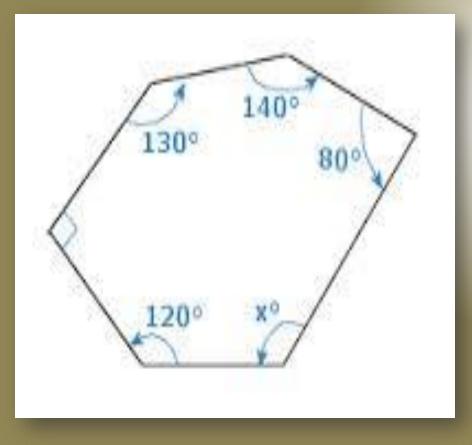
The sum of the interior angles of a polygon= $(n - 2) \times 180^{\circ}$ sum of the (where n = no. of sides of a polygon)



$$127^{\circ} + (5x + 3)^{\circ} + 88^{\circ} + (10x + 7)^{\circ}$$

= (4-2) × 180°
225° + 15x = 2× 180°
225° + 15x = 360°
15x = 135°
x = 9°
Calculating the interior & exterior angles of polygons

1. Solve for *x*



2. Solve for x

