3.1 Geometry of 2D shapes
3.2 Geometry of 3D Objects
3.3 Geometry of straight lines
3.4 Transformation geometry
3.5 Construction of Geometric Figures

CLASSUFY 2D-SHAPES

1.Equilateral Triangles

*all sides equal *all angles $=60^{\circ}$

2. Isosceles Triangles

*2 sides equal
*Base angles of equal sides are equal
3. Rightit angled Triangles
*1 angle $=90^{\circ}$
*The side opposite the 90° is the largest side \& called the hypotenuse

Classifying Triangles Song

Hypotenuse

CLASSUFY 2D-SHAPES:

Quadrilait

1.Parallelogram

*Opposite sides parallel * Opposite sides equal
*Opposite angles equal

*Diagonals bisect each other
2. Rectangles

* Opposite sides parallel * Opposite sides equal *All 4 angles equal $=90^{\circ}$ *Diagonals equal

*Diagonals bisect each other

3. Square

* Opposite sides parallel
* Opposite sides equal *All 4 angles equal $=90^{\circ}$ * Diagonals bisect each other at 90°

4a Rhombus

*Opposite sides parallel *All 4 sides equal

* Opposite angles equal *Diagonals bisect each other at 90°
*Diagonals bisect the angles of vertices

*One pairs of opposite sides parallel

*Two pairs of adjacent sides equal
*Equal angles opposite line of symmetry

Quadrilateral Proofs and give reasons for your answers 3.

*Triangles are said to be similar if:
i. All pairs of corresponding angles are equal
i. All pairs of corresponding sides are in the same proportion
ie. $\frac{A B}{D E}=\frac{B C}{E F}=\frac{A C}{D F}$

Examples

1. Prove that $\triangle A B C$ III $\triangle D E F$:
$\frac{A B}{D E}=\frac{B C}{E F}=\frac{A C}{D F}$
(sides in proportion)
$\therefore \triangle \mathrm{ABC}||\mid \triangle \mathrm{DEF}$

2.1 Prove that \triangle ADE $00 \triangle \triangle A B C:$

 In $\triangle A D E$ and $\triangle A B C$i. Â is common (given)
ii. $\mathrm{D}=\mathrm{B}$ (corresponding $\angle^{\prime} \boldsymbol{s}$; DE II BC)
iii. $\hat{E}=\hat{C}$ (corresponding $\iota^{\prime} \boldsymbol{s}$;

DE II BC
$\therefore \triangle \mathrm{ADE}$ III $\triangle \mathrm{ABC}$

In $\triangle \mathrm{ADE}$ III $\triangle \mathrm{ABC}$（given）
$\therefore \frac{A D}{A B}=\frac{A E}{A C}$（sides in proportion）
$\frac{4}{4+2}=\frac{5}{5+E C} \leftarrow$ Fill in lengths from diagram

$\therefore \frac{A D}{A B}=\frac{A E}{A C}$（sides in proportion）
$\frac{4}{4+2}=\frac{5}{5+E C} \leftarrow$ Fill in lengths from diagram
$20+4 E C=30$

ration）

＠agron
－
 8

$$
\begin{aligned}
4 E C & =10 \\
E C & =2.5 \mathrm{~cm}
\end{aligned}
$$

$$
\begin{aligned}
4 E C & =10 \\
E C & =2.5 \mathrm{~cm}
\end{aligned}
$$

(xx
\qquad

Similarity Example Problems

1. Prove that $\triangle A B C$ III $\triangle D E F$

2. Solve for x

Congruency(

*Triangles are said to be congruent if they have the same shape and size:
*There are 4 cases for congruency:

ii. Side, An
[NOTE! Angle must be included!]

iiiio Angley @ngle, side

 iv. 90° hypotenuse side

Note! the order of the vertices of a triangle is NB ie. \triangle ABC III \triangle DEF is not necessarily the same as $\triangle \mathrm{ABC}$ III $\triangle \mathrm{EDF}$!

Exancoles

1. Prove that $\triangle \mathrm{ABC}$ III $\triangle \mathrm{ACD}$: $\triangle A B C$ and $\triangle A C D$

i. BÂD=CÂD (given) Note! Always
ii. $B D A=C D A$ (given) remember to state the
iii. $A D$ is common
$\therefore \triangle \mathrm{ABC}$ III $\triangle \mathrm{ACD}(\mathrm{a}, \mathrm{a}, \mathrm{s})$ case for congruency!
2. Determine the length of QB, if PA 7 cm $\triangle A B Q$ @nd \triangle BAP
i. $\quad \mathrm{AQ}=\mathrm{BP}$ (given)
ii. $A=B$ (given)
iii. $A B$ is common
$\therefore \triangle \mathrm{ABQ} \equiv \triangle \mathrm{BAP}(\mathrm{s}, \mathrm{a}, \mathrm{s})$
$\therefore \mathrm{QB}=\mathrm{PA}$ (from congruency)

$\therefore \mathrm{QB}=7 \mathrm{~cm}$ (given $\mathrm{PA}=7 \mathrm{~cm}$)
3. Prove that $\Delta \mathrm{PQR} \equiv \Delta \mathrm{TSR}$

2. Solve for $x \& y$

3.2 Geometry of 3D- objects

- Platonic solids (aka regular polyhedral) have congruent faces (sides) made up of regular polygons
- There are 5 platonic solids
- Proved by Euclid in his book, "Elements"

CDassify 3D objects

T

Platonic Solids - Part 1

Platonic Solids - Part 2
\qquad
\qquad
\square O

Platonic Solids - Part 2
 (a)

?

Patonic Solids - Part

Properties of platonic Solids

1.Tetrahedron

- No. of faces:

4 equilateral triangular faces

- No. of vertices: 4
- No. of edges: 6

- A tetrehedron hes 2 distinct netsb

Can you draw them?

- No. of faces:

6 square
faces(faces meet at 90°)

- No. of vertices: 8
- No. of edges. 12

Can you draw all of them?

- No. of faces:

8 equilateral triangular faces

- No. of vertices: 6
- No. of edges: 12
- A octahedron has 11 distinct nets!

Can you draw any of them?

4, Dodecahedron

- No. of faces: 12 pentagonal faces
- No. of vertices: 20
- No. of edges: 30
- A dodecahedron hes 43 380 distinct nets!

Can you draw one?

5. lcosalnedron

- No. of faces: 20 equilateral triangular
faces
- No. of vertices: 12
- No. of edges: 30
- An lcosahedron has 4.3 380 distinct nets!

Can you draw one?

Spheres

- Are round solid figures, with every point on its surface equidistant from its centre

cylinders

- Cylinders are closed solids, that have 2 parallel (circular or elliptical) base connected by a curved surface

Your turn to be creative!

 Make your own platonic solid models by folding paper...3.3 Geometry of Straight
lines

Angle Relationships

1. Angles around a point add up to 360
E.g. solve for

$$
x+75^{\circ}+3 x+10^{\circ}+90^{\circ}=360^{\circ}
$$

(angles around a point)

$$
\begin{aligned}
4 x+175^{\circ} & =360^{\circ} \\
4 x & =185^{\circ} \\
x & =46.25^{\circ}
\end{aligned}
$$

3. Vertically opposite angles are equal

E.g. solve for

$5 z+20^{\circ}=9 z-4$
(Vert.0pp $\iota^{\prime} s$)
$5 z-9 z=4^{\circ}-20^{\circ}$
$-4 z=-24^{\circ}$
$z=6^{\circ}$

Vertically

Opposite Angles
Examples

2. Adfacent on a straight line add up to 180°

 E.g. solve for y :
$2 y+3 y+4 y=180^{\circ}$
(Adj. angles on a str. line)

$9 y=180^{\circ}$ $y=20^{\circ}$

1. Solve for y

* Don't forget to write reasons for statements!

S.

 (a) coser

 (a)
3.2. Alternate angles are equai

E.g. if $c=35^{\circ}$, determine b.

Z or N shape

$\mathrm{b}=\mathrm{c}($ alt.L's $P Q \| R S)$

$=35^{\circ}$

E.g. if $a=130^{\circ}$, determine b.

$$
\begin{gathered}
a+b=180^{\circ}\left(c o-\text { int. } \angle^{\prime} \mathrm{s} ; \mathrm{DE} \| \mathrm{FG}\right) \\
130^{\circ}+b=180^{\circ} \\
b=50^{\circ}
\end{gathered}
$$

Angles formed by Parallel Lines \& Transversals Example Problems

1. Solve for the unknown

* Don't forget to write reasons for statements!
3.4 Transformation Geometry

Transformations

\Rightarrow Transformations occur when a point or object is moved
\Rightarrow If a figure's shape \& size remain the same, the transformation is said to be rigid
\Rightarrow Rigid transformations include: translations, reflections \& rotations
\Rightarrow The transformed point or object is called the image
\Rightarrow Notation: $P(x, y) \rightarrow P^{\prime}(x \ldots \ldots ; y \ldots)$
transform point P' where
the general transformation rule is applied to $(x ; y)$

Translations

\Rightarrow These transformations include:
i. Vertical translations up \& down movements

Only affect the y-coordinates
$\mathrm{P}(x ; y)] \rightarrow \mathrm{P}^{\prime}(x ; y \pm a)$
[where a is a constant]

Bid. Horizontal translations

- Left \& right movements

Only affect the x-coordinates

- $\mathrm{P}(x ; y) \rightarrow \mathrm{P}^{\prime}(x \pm a ; y)$
[where \boldsymbol{a} is a constant]

Translating Shapes

5	$P(x ; y)$		$P^{\prime}(x+3 ; y)$
4			
3			
2			
-1	12	3	45

Examples

1. Describe the transformation that has occurred
$\triangle A B C$ has moved 2 units down and 6 units to the right
2. Write down the transformation rule

$$
\mathrm{P}(x ; y) \rightarrow \mathrm{P}^{\prime}(x+6 ; y-2)
$$

3.Draw the transformed triangle if it is translated 2 units to the right and 7 units down

1. Draw the image of $A B C D$, if it is translated 4 units to the left and 5 units up
2. Write the transformation rule described in Question 1

2. Reflections

\Rightarrow These transformations include:

i. Reflections about the x axis The transformed point or object is a mirror image across a horizontal line of $\mathbf{y}=\mathbf{0}$
i.e the \boldsymbol{x} axis

- \boldsymbol{x} co ordinates stays the same, y co ordinates changes sign
- $\mathrm{P}(x ; y) \rightarrow \mathrm{P}^{\prime}(x ; y)$

- The transformed point or object is a mirror image across a vertical line of $x=0$ i.e the y-axis
- x co ordinates change sign, y co ordinates stays the same $\mathrm{P}(x ; y) \rightarrow \mathrm{P}^{\prime}(-x ; y)$
$\left.\begin{array}{|cc|c}P^{\prime}(-x ; y) & 5 \\ \square & 4 \\ & 3 \\ & 2 \\ & 1 & \square \\ \hline-2 & -1 & -1\end{array}\right)$

Reflections about the line $x=y$

 The transformed point or image is a mirror image across a diagonal line that intersects the origin $(\mathbf{0}=\mathbf{0})$ - ie. The line $\boldsymbol{x}=\boldsymbol{y}$ i.e the y-axisSwop the co ordinates of \boldsymbol{x}, and \boldsymbol{y} around

$$
\mathrm{P}(x ; y) \rightarrow \mathrm{P}^{\prime}(-x ; y)
$$

Reflecting Shapes

Examples

For each of the following:

i. Describe the transformation
ii. Write down the line of symmetry rule
iii. Write down the general transformation rule

i. reflect about the y axis
ii. $\quad \boldsymbol{x}=\mathbf{0}$
iii. $\mathrm{P}(x ; y) \rightarrow \mathrm{P}(-x ; y)$

2. For (U9 $G^{9} \mathrm{~B}^{3} \rightarrow$ Us9 $^{39} \mathbb{G}^{99} \mathrm{~B}^{99}$
 (ie.red to green transformation)

For U'G'B' \rightarrow U"G"B":

i. reflect about the $y=x$ line
ii. $\boldsymbol{y}=\boldsymbol{x}$
iii. $\mathrm{P}(x ; y) \rightarrow \mathrm{P}^{\prime}(-x ; y)$

2.Describe the transformations and write down the general

 rule for transformations from $A B C \rightarrow A^{\prime} B^{\prime} C \rightarrow A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$The blue object has been reflected in the blue line. Which is the correct image?

\Rightarrow Enlargement involve the enlarging of an object, in the same proportion by a factor called the scale factor

- The size of the angles stay the same; while object get bigger
$\mathrm{P}(x ; y) \rightarrow \mathrm{P}^{\prime}(a x ; a y)$
[where a is a constant and $a>1$ 1]
(scale factor) ${ }^{2}$

Exanple

$\triangle A B C \rightarrow A^{\prime} B^{\prime} C$ has been enlarged by a
factor of 3

- Each co-ordinate is multiplied by 3 e.g. $\mathrm{A}(1 ; 1) \rightarrow A^{\prime}(3 ; 3)$
$\therefore \boldsymbol{P}(\boldsymbol{x} ; \boldsymbol{y}) \rightarrow \boldsymbol{P}^{\prime}(\boldsymbol{x} ; \mathbf{3} \boldsymbol{y})$
- The area will be 3 times longer
- The perpendicular will be $(3)^{2}=9$ times bigger ie. .

Given the following transformation:

1. Describe the transformation
2. Write down the general rule for the transformations
3. Draw $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime} \rightarrow A^{\prime} B^{\prime} C$ is enlarged by a factor of 4
4. By how many times larger

will the area be from
$A^{\prime} B^{\prime} C \rightarrow A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$
\Rightarrow Reductions involve reducing each length of an object, in the same proportion by a factor - called the scale factor

- The size of the angles stay the same; while object get smaller
- $\mathrm{P}(x ; y) \rightarrow \mathrm{P}^{\prime}(\mathrm{ax} ; a y)$
[where a is a constant and $0<a<1$]

Exanple

$\triangle \mathrm{ABC} \rightarrow \mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}$ has been enlarged by a factor of 3

- Each co-ordinate is multiplied by 3
e.g. $\mathrm{A}(1 ; 1) \rightarrow A^{\prime}(3 ; 3)$

The perimeter will be 3 times shorter

- \quad The area be $(3)^{2}=9$ times smaller ie. (scale factor) ${ }^{2}$

Given the following transformation:

1. Describe the transformation
2. Write down the general rule for the transformation.
3. By what factor will original shape and images perimeter and area be reduced by?
3.5 Construction of Geometric Figures

2. Constructing Angles: 60 :30 $8^{\circ} 15^{\circ}$

1. Place compass on
$\mathrm{P} \& \operatorname{draw}_{\operatorname{arc} A B}$
2. Keep the compass the same \& place on B. Draw arc CD

3. Constructing a triangle given 3 sides

5. Place the
compass on
K \& draw
arc L
1.Draw line
6. Measure the first given length on a compass (using a ruler)

VJ

7. Place the compass on M compass on M
\qquad
points to form Δ
2
$--1$
8. Join -
正
\qquad

6. Measure the third given length on a compass (using a ruler) -
 asure the

second given length on a compass (using a ruler)
4. Measure the
6．place compass
on and draw $\begin{aligned} & \text { 5．Measure the } \\ & \text { second length } \\ & \text { on a compass } \\ & \text {（using a ruler }\end{aligned}$
6．place compass
on and draw $\begin{aligned} & \text { 5．Measure the } \\ & \text { second length } \\ & \text { on a compass } \\ & \text {（using a ruler }\end{aligned}$
6．place compass
on and draw $\begin{aligned} & \text { 5．Measure the } \\ & \text { second length } \\ & \text { on a compass } \\ & \text {（using a ruler }\end{aligned}$
6．place compass
on and draw $\begin{aligned} & \text { 5．Measure the } \\ & \text { second length } \\ & \text { on a compass } \\ & \text {（using a ruler }\end{aligned}$
6．place compass
on and draw $\begin{aligned} & \text { 5．Measure the } \\ & \text { second length } \\ & \text { on a compass } \\ & \text {（using a ruler }\end{aligned}$
6．place compass
on and draw $\begin{aligned} & \text { 5．Measure the } \\ & \text { second length } \\ & \text { on a compass } \\ & \text {（using a ruler }\end{aligned}$
6．place compass
on and draw $\begin{aligned} & \text { 5．Measure the } \\ & \text { second length } \\ & \text { on a compass } \\ & \text {（using a ruler }\end{aligned}$
6．place compass
on and draw $\begin{aligned} & \text { 5．Measure the } \\ & \text { second length } \\ & \text { on a compass } \\ & \text {（using a ruler }\end{aligned}$
6．place compass
on and draw $\begin{aligned} & \text { 5．Measure the } \\ & \text { second length } \\ & \text { on a compass } \\ & \text {（using a ruler }\end{aligned}$
6．place compass
on and draw $\begin{aligned} & \text { 5．Measure the } \\ & \text { second length } \\ & \text { on a compass } \\ & \text {（using a ruler }\end{aligned}$
6．place compass
on and draw $\begin{aligned} & \text { 5．Measure the } \\ & \text { second length } \\ & \text { on a compass } \\ & \text {（using a ruler }\end{aligned}$

7．Draw line VW

3．Place the compass on U \＆ draw arc W

 draw arc W r $=$
dra

the First length on a compass都

1 ，

（using a using a
ruler）
 length o
$\left.\begin{array}{l}\text { 6．place compass } \\ \text { on and draw }\end{array}\right\} \begin{aligned} & \text { 5．Measure the } \\ & \text { second length } \\ & \text { on a compass } \\ & \text {（using a ruler }\end{aligned}$
6．place compass and draw
on and as e the
6．place compass
on and draw $\begin{aligned} & \text { 5．Measure the } \\ & \text { second length } \\ & \text { on a compass } \\ & \text {（using a ruler }\end{aligned}$

6．place compass
on and draw $\begin{aligned} & \text { 5．Measure the } \\ & \text { second length } \\ & \text { on a compass } \\ & \text {（using a ruler }\end{aligned}$

6．place compass and draw
on and as e the
6．place compass and draw
on and as e the

2．Measure
4．Constructing a triangle given 2 sides \＆＠Non－Included
］
（6．Constructing a triangle given 2 sides \＆a non included

4．Construct
the given
angle at
point B

$$
\begin{gathered}
\text { 4. Construct } \\
\text { the given } \\
\text { angle at } \\
\text { point B } \\
\text { 1. Draw } \\
\text { line BD } \\
\text { 2. Measure } \\
\text { the First } \\
\text { length on } \\
\text { a compass } \\
\text { (using a } \\
\text { ruler) }
\end{gathered}
$$

$$
\begin{aligned} & \text { ir } \\ & \text { is } \\ & \mathbf{V} \end{aligned}
$$

 號

 號
 ```None ```
 ```\(\square\)```


```
```


\qquad

\section*{for triangle ABC

 ABC

 $$
\mathrm{ABC} 2
$$

}ruler
Place compass
arc C1－C2
Draw lines AC2
for triangle
ABC2
raw lines AC1 for
ruler
on A and draw
arc C1－C2
Draw lines AC2
for triangle
ABC2
aw lines AC1 for
ruler
Place compass
on A and draw
arc c1－c2
Draw lines AC2
for triangle
ABC
raw lines AC1 for
triangle ABC1

0

\qquad

3. Place the compass on A\& draw arc D
1.Draw line AE
2. Measure the First length on a compass (using a ruler)
4. Construct the Angles second given angle at point

Draw line BC

7. Measure the Third length on a compass (using a ruler)
9. Construct the second given angle at point D
8. Place the
compass on $D_{\&}$
draw arc C

Exterior Angle of a triengle

The exterior angle of a triangle = the sum of the interior opposite angles
E.g.

$\angle 1+\angle 2=\angle 3$
$2 x+5 x=105^{\circ}($ ext. \angle of
$7 x=105^{\circ} \quad \Delta$ sum of
$x=15^{\circ}$
int. opp. \angle 's)

EKERCISE0

1. Solve for x

The sum of the interior angles of a polygon $=(n-2) \times 180^{\circ}$ sum of the (where $\mathrm{n}=$ no. of sides of a polygon)

$127^{\circ}+(5 x+3)^{\circ}+88^{\circ}+(10 x+7)^{\circ}$
$=(4-2) \times 180^{\circ}$
$225^{\circ}+15 x=2 \times 180^{\circ}$ $225^{\circ}+15 x=360^{\circ}$
$15 x=135^{\circ}$
$x=9^{\circ}$
Calculating the interior \& exterior angles of polygons

EXERCISE!

1. Solve for x

2. Solve for x

