NUMBERS, OPERATIONS AND RELATIONSHIPS

\square Whole numbers
\square Exponents
\square Integers
\square Common Fractions
\square Decimal Fractions

"Play around with these figures, Harry. I've given you the total I want them to add up to."

WHOLE NUMBERS

RECAP! The Number System

- REAL NUMBER SYSTEM

Natural Numbers (N)

Whole (i.e. no decimals), positive numbers that start at one.
(Also known as counting numbers)

Examples:

$1 ; 2 ; 3 ; 4 ; 5 ; \ldots .47 ; \ldots ; 99 \ldots$

And what about 0 ?
$x, 0$ is not a natural number!

Whole Numbers (N_{0})

 Whole (i.e. no decimals), positive numbers that start at zero.
Examples:

$$
1 ; 2 ; 3 ; 4 ; 5 ; \ldots . ; 47 ; \ldots ; 99 \ldots
$$

And what about $0 ?$
\checkmark Yes, 0 is a whole number!

Integers (Z)

Whole (i.e. no decimals), positive and negative numbers; including zero.

Examples:

$$
\ldots ;-4 ;-3 ;-2 ; \ldots ; 2 ; 3 ; 4 ; \ldots
$$

And what about 0 ?
\checkmark Yes, 0 is an integer!

Rational Numbers (Q)
Numbers that can be written as $\frac{a}{b}$ where a and b are integers and $b \neq 0$.

- Includes terminating decimals (e.g. 0,4) and recurring decimals (e.g. $0, \dot{3} ; 0,7 \dot{5}$ etc.)

Examples:

5

$$
\begin{array}{ll}
\frac{1}{2} & 0.3
\end{array}
$$

$$
\sqrt{16} \quad-1 \frac{6}{9} \quad \sqrt[3]{27}
$$

And what about $0 ? \checkmark$ Yes, 0 is rational!

Irrational Numbers (Q^{\prime})
All numbers that cannot be written as $\frac{a}{b}$ where a and b are integers and $b \neq 0$. i.e. numbers that recur without a pattern

Examples:
$\begin{array}{ll}0,34791 \ldots & -2,11816393 \ldots \\ -\sqrt{6} & \sqrt[3]{17}\end{array}$
Summary of the Number System
And what about 0 ?
$x, 0$ is not an irrational number!

Exercise

Complete the following table by ticking the correct boxes:

Number	N_{0}	N	Z	Q	Q
4,5					
$\frac{3}{2}$					
-591					
2,76					
$-3,6$					
$\sqrt{121}$					
0					

Exercise

Continued ...
Number $\mathrm{N}_{0} \quad \mathrm{~N} \quad \mathrm{Z} \quad \mathrm{Q} \quad$ Q'

$\sqrt{6 \frac{1}{4}}$				
$\frac{-13}{21}$				
$-0,343434 .$.				
$\sqrt[3]{-8}$				
$\sqrt[3]{729}$				
π				
π				

] MULTIPLES

Natural numbers that are multiplied by another natural number
i.e. times - tables of the number!

Example: Multiples of $4 \ldots$

$$
4 ; \quad 16 ; \quad 64 ; \quad 256 ; \quad 1024 \ldots 4096
$$

$\times 4 \times 4 \times 4 \times 4$| What is the |
| :---: |
| next |
| number? |

Lowest Common Multiple (LCM)

Write out the multiples of each number and spot the lowest multiple that is common

- used when adding and subtracting fractions

Example: Find the LCM of 4 and 7.
Multiples of $4: 4 ; 8 ; 12 ; 16,2024 ; 28 ; 32 ; 36,40$ Multiples of 5: 5; 10; $152025 ; 30 ; 35 ; 40$

Common multiples

$$
\mathrm{LCM}=20
$$

I FACTORS

Natural numbers that can divide into another number, without any remainders

Example: Factors of $48 . .$.

$$
1 ; 2 ; 3 ; 4 ; 6 ; 8 ; 12 ; 16 ; 24 ; 48
$$

Notice the pairs?
1 \& 48
2 \& 24 etc

Highest Common Factor (HCF)

Write out the factors of each number and spot the highest factor that is common - used when simplifying fractions

Example: Find the HCF of 30 and 40.

HCF's (aka

Greatest
Common
Factors -
GCF's)

Factors of $30: 1 ; 23 ; 46 ; 1015 ; 30$
Factors of 40: 1; $245 ; 8 ; 1020 ; 40$
Common factors

$$
\mathrm{HCF}=10
$$

Prime Factors

Numbers which only have 2 factors
i.e. 1 and itself

Examples:

Prime vs Composite Numbers using Divisibility Rules
$2 ; 3 ; 5 ; 7 ; 11 ; 13 ; 17 ; 19 ; 23 ; \ldots$
What about 1?

1 is not prime, as it only has 1 factor!

Prime Factorization

Prime Factorization

We use the ladder method to write a number in terms of its prime numbers

Eg: Write 80 as a product of its prime factors

$$
\therefore 300=2^{2} \times 3 \times 5^{2}
$$

Keep dividing by the prime number until you are left with a remainder - then use the next prime number

2 2	1500
3	75
5	25
5	5
	1

Using prime factorization to find the LCM

1. Write each number as a product of its prime factors
2. Multiply the highest power of each prime factor of each number together, to find the LCM

Example: Find the LCM of 6 and 8 by means of prime factorization.

Prime factors of 6:

$\therefore 6=2 \times 3$

3

Prime factors of 8 :

$$
\therefore 8=2^{3}
$$

$$
2^{3}
$$

2	6		
3	3		
	1	\quad	2
:---			
2	\quad	8	
:---			

First prime

 number ... highest powerSecond prime number ... highest power

Using prime factorization to find the HCF

1. Write each number as a product of its prime factors
2. Multiply the highest power of each prime factor that is common to find the HCF

Example: Find the HCF of 30 and 40 by means of prime factorization.

Prime factors of 30 :

$$
\begin{array}{rl}
\therefore 30 & =2 \times 3 \times 5 \\
2 & 5 \\
2^{1} & 5
\end{array}
$$

2	30		
3	15		
5	5	2	40
	1	2	20
2	10		
			1

Prime factors of 40:

$$
\therefore 40=2^{3} \times 5
$$

$$
\text { (2) } 5
$$

$$
2^{1} \quad 5
$$

$$
H C F=2^{1} \times 5=10
$$

Common

 factorsHighest power of each common factor

Exercise

1. Find the factors of:
1.1. 49
$1.2 \quad 64$
1.3108
2. Find the multiples of:
2.1. 7
2.212
2.324

Exercise

3. Find the HCF of:
3.1. 12 and 24
3.232 and 56 3.345 and 90
4. Find the LCM of: 4.1. 4 and 14
4.2 18 and 22
$4.3 \quad 35$ and 48

Exercise

5. Write the following numbers as a product of its prime factors:
5.1. 66
$5.2 \quad 75$
5.3210
6. Find the LCM of 16 and 26 by means of prime factorization.
7. Find the HCF of 84 and 152 by means of prime factorization.

I RATIOS

Used to compare quantities of the same type (e.g. length, age, sweet, money etc)

- Can be written in 3 different forms ...
i) $1: 2$
ii) $\frac{1}{2}$
iii) 1 to 2
- Order of the numbers is very important
- Must be simplified as far as possible

Examples:

$$
\begin{aligned}
& 42: 54 \\
& 7: 9
\end{aligned}
$$

Divide both sides by the HCF i.e. 6

2. Andrew is 8 years old, while his father is 40 years old. Express their age in the simplest ratio.

$$
\begin{aligned}
& 8: 40 \\
& 1: 5
\end{aligned}
$$

3. Manny and Pip divide a box of Smarties in the ratio of $2: 3$. If there are 25 Smarties in a box, how many Smarties does Pip get?

Total no. of parts $=2+3=5$
Remember Order! Manny : Pip

$$
2: 3
$$

$$
\text { Pip }=\frac{3}{5} \times 25=15 \text { Smarties }
$$

4. Jim and Brian share their profits in the ratio of $4: 5$. If Brian gets R15 000, then how much does Jim get in profit?

Remember Order!
Jim : Brian 4:5
?: R15 000
1 Part $=R 15000 \div 5=R 3000$ $\mathrm{Jim}=4$ parts $\times R 3000=R 12000$

Working with Ratios

Exercise

1. Simplify the following ratios:

$$
\begin{array}{ll}
\text { 1.1. } & 24: 60 \\
1.2 & 100: 44 \\
1.3 & 240: 300
\end{array}
$$

2. A recipe calls for 450 g flour, 200 g sugar and 120 g cocoa. Write ratio of flour : cocoa : sugar in its simplest form.

Exercise

3. A balloon company manufactures red and yellow balloons in the ratio of $5: 3$. If the company manufactures 12000 balloons in total, then how many red balloons were made?
4. A detergent bottle says that the cleaning liquid to water should be mixed in the ratio of $2: 3$. If Sally used 120 ml of cleaning liquid, then how much water must she add?

RATES

Used to compare two different quantities e.g. distance \& time $\quad . . \mathrm{km} / \mathrm{hr}$ volume \& time $\quad . . \mathrm{kl} / \mathrm{min}$ money \& mass $\quad . . \mathrm{R} / \mathrm{g}$ etc

- Can be written in ratio form
- Order of the numbers is very important
- Must write down the units

Speed, Distance \& Time

1. Pam travels at $70 \mathrm{~km} / \mathrm{h}$. If she travels for 3 hours, how far did she travel?
$70 \mathrm{~km}: 1 \mathrm{hr}$
$3 \mathrm{hrs} \times 70 \mathrm{~km}=210 \mathrm{~km}$

Rate: 70 km per 1 hr
2. Determine how long it took Sandy to reach the beach, if she travelled at 60 km / h and the beach is 20 km away?

$$
\begin{aligned}
\text { Time } & =\text { Distance } \div \text { Speed } \\
& =20 \mathrm{~km} \div 60 \mathrm{~km} / \mathrm{h} \\
& =0.33 \mathrm{hr}
\end{aligned}
$$

3. The rate of water flowing out of a hose pipe is 0,8 litre per minute. How many liters of water would be used if James waters the garden for 1,5 hours?

No. of litres $=0,8 l \times 90 \mathrm{mins}=72 l$
4. Which is cheaper? A 500 ml colddrink for R6,50 or a 350 ml colddrink for R5,80?

* $500 \mathrm{ml} \rightarrow R 6,50 \div 500 \mathrm{ml}=R 0,013 / \mathrm{ml}$
* $350 \mathrm{ml} \rightarrow R 5,80 \div 350 \mathrm{ml}=R 0,016 / \mathrm{ml}$

The 500 ml colddrink is cheaper.
Rate per hour

Exercise

1. Which is a better buy?

* 5 kg bag of flour at R23,99
* 2 kg bag of flour at R14,80
* 500 g bag of flour at R6,20

2. Determine the speed at which a truck was travelling if t covered a distance of 2400 km in 25 hours?

Exercise

3. Liam calculates that it costs him R1,80 per kilometer in fuel. Determine his total cost of travelling to and from work each day if he stays 23 km from work.
4. How long would it take a tortoise to cover a a distance of 1 km , if the tortoise moves at a speed of 2 meters per minute?

- DIRECT PROPORTION

- Quantities are said to be in direct proportion when both quantities increase / decrease in the same ratio
i.e. as x gets bigger, so y gets bigger too by the same ratio (same applies for smaller)
$\therefore \frac{y}{x}=$ constant ratio
- The graph of a direct proportion relationship is a straight line

Examples:

1. Find the missing values in the table:

$$
\begin{aligned}
& A=9 \times 2,5=22,5 \\
& B=120 \div 2,5=48
\end{aligned}
$$

2. A school works according to the fact that each learner needs 250 ml of juice in a day. How many litres of juice are needed at the athletics day, if the school has 1241 learners?

Typical Direct Proportion Problems
As the number of learners increases, so does the volume of juice needed by the same ratio \therefore Direct Proportion!

Constant ratio
 $=250 \mathrm{ml}$

No. of liters of juice

$$
=250 \mathrm{ml} \times 1241
$$

$$
=310250 \mathrm{ml}
$$

$$
=310,25 \text { liters }
$$

I INDIRECT / INVERSE PROPORTION

- Quantities are said to be in indirect / inverse proportion when their products remain constant
i.e. as x gets bigger, so y gets smaller by the same ratio (and vice versa)
$\therefore x \times y=$ constant product
- The graph of an indirect / inverse proportion relationship is a hyperbola

Examples:

1. Find the missing values in the table:

$$
\begin{aligned}
& A=120 \div 8=15 \\
& B=120 \div 5=24
\end{aligned}
$$

Constant product
$=x \times y$
$=2 \times 60$
$=3 \times 40$
$=120$
2. It takes twelve men four days to paint a school building. How long would it take to paint the school if only eight men were available for the job?

As the number of men decreases, so the time needed to complete the painting must increase \therefore Indirect Proportion!

Constant product
$=12 \times 4=48$

No. of days

$$
=48 \div 8
$$

$$
=6 \text { days }
$$

Direct vs Indirect Proportion:

Working with Direct \& Indirect Proportion Examples

Proportionality Constants in Direct \& Indirect Proportion

Summary of Direct \& Indirect Proportion

Exercise

1. A recipe that makes 12 cupcakes calls for 500 g of flour. How many grams of flour are needed to make 10 cupcakes?
2. If it takes two people four hours to clean a house, then how long will it take four people to clean the same house?

Exercise

3. Find the missing values in the table below:

x	2	3	A	6
y	18	12	8	B

4. If it takes ten people four hours to make 220 Christmas decorations, then how many Christmas decorations can be made in four hours, if there are 15 people?

Exercise

5. Find the missing values in the table below:

x	30	20	10	B
y	6	4	A	1,5

6. Warren travels for 2,5 hours at a speed of $88 \mathrm{~km} / \mathrm{hr}$. How long will it take him to travel the same distance, if he travels at $120 \mathrm{~km} / \mathrm{hr}$?

FINANCE

- VAT (Value Added Tax) is a government tax of 14%, that is added onto the price of most goods and services

Example:

VAT Calculator

Determine the VAT-incl. price of a solar panel if it is quoted as R8 700 excl. VAT.
$V A T=\frac{14}{100} \times R 8700=R 1218$
Price incl.VAT $=$ R8 $700+R 1218=R 9918$

- Discounts (usually given as a \%): To find the sale price, determine the Rand value of the discount and subtract it from the original price of the item

Discounts \& Mark-Ups

Example:

An engagement ring of R18 999 is advertised as being 20% less on sale. How much can the groom expect to pay for the engagement ring?
Discount $=\frac{20}{100} \times R 18999=R 3$ 799,80 Sale price $=R 18999-R 3$ 799,80 $=$ R15 199,20

- Profit or Loss = Selling Price - Cost Price = Income - Expenses
* If the number is positive \rightarrow Profit
* If the number is negative \rightarrow Loss

Example:

Calculate the profit or loss that a T-shirt manufacturer makes if they buy T-shirts for R22 100 and receive an income of R26 900.

Profit $=$ R26 $900-$ R22 $100=$ R4 800

- Simple Interest:

* Interest is calculated on the original amount (called the principle)
* Interest remains constant for the entire life of the loan or investment

$$
A=P(1+n i)
$$

$\begin{array}{ll}A=\text { total amount } & n=\text { no. of years } \\ P=\text { principle amount } & i=\text { interest rate }\end{array}$

Understanding Simple Interest

Example:

Ann invests R45 000 of her inheritance in a bank account that accrues simple interest of 12,6\% p. a. Determine the value of Ann's investment after seven years.

$$
\begin{aligned}
A & =P(1+n i) \\
& =45000\left(1+7 \times \frac{12,6}{100}\right) \\
& =R 84690
\end{aligned}
$$

Note!
Interest rate is given as a \%!

- Compound Interest:

* Interest is calculated on the original amount (principle), plus on the interest that has accumulated
* Interest increases exponentially

$$
A=P(1+i)^{n}
$$

$A=$ total amount $\quad n=$ no. of years
$P=$ principle amount $\quad i=$ interest rate
Understanding Compound Interest

Example:

Nellis takes out a loan of R12 700, in order to bus himself a quad bike. The bank charges him interest of 14,5\% compounded annually.
Determine how much Nellis will pay back in total, if he pays off his loan in 24 months.

$$
\begin{aligned}
A & =P(1+i)^{n} \\
& =12000\left(1+\frac{14,5}{100}\right)^{2} \\
& =R 15732,30
\end{aligned}
$$

Note! The formula works in years ...
24 months
$=2 \mathrm{yrs}$

- Hire Purchase:

* The buyer puts down a on a product and pays off the outstanding balance (plus interest) in monthly instalments over a period of time
* Usually used for furniture \& appliances
* Simple interest is calculated on the outstanding balance

$$
\begin{aligned}
& \text { Remember: } \\
& A=P(1+n i)
\end{aligned}
$$

Example:

Joshua Door advertises a leather lounge-suite for R26 999 cash; or on HP with a 10\% deposit, interest at 11,5\% p.a. over a period of 36 months. Calculate the monthly instalments and how much you would save if you bought it cash.

$$
\begin{aligned}
& \text { Deposit }=\frac{10}{100} \times R 26999=R 2699,90 \\
& \text { Balance }=R 26999-R 2699,90=R 24299,10
\end{aligned}
$$

$$
\begin{aligned}
A & =P(1+n i) \\
& =24299,10\left(1+3 \times \frac{11,5}{100}\right)
\end{aligned}
$$

Interest is only calculated on the

$$
=R 32682,29
$$ outstanding balance

Monthly instalments $=\frac{R 32682,29}{36}$
$=R 907,84$

Total paid on HP

$$
\begin{aligned}
& =\text { Deposit }+ \text { Monthly instalments } \\
& =R 2699,90+(R 907,84 \times 36) \\
& =R 2699,90+R 32682,24 \\
& =R 35382,14
\end{aligned}
$$

Saving = Total paid on HP - Cash Price
= R35 382,14 - R26 999
= R8 383,14
Hire Purchase
Calculations

Exercise

1. A car exhaust is quoted as R3 780 excl. VAT. Determine the cost of the exhaust incl. VAT.
2. A tent is on special for 25% less. If the tent costs R1 299, determine the sale price.
3. A florist spends a total of R14 000 per month on expenses. If the florist receives an income of R16 500, determine the profit or loss of the business.

Exercise

4. Determine the total value of an investment, if the customer invests R60 000 for four years and receives a simple interest rate of 8,8\% p.a.
5. Calculate the interest that a customer will pay if he takes out a loan of R44 000 over a period of six years, at a compounded interest rate of 12,4\% p.a.
6. Determine the monthly instalment if a customer buys a TV on HP, with a 12,5\% deposit on the cash price of R10 999; and pays it off over 24 months, at an interest rate of $7,6 \%$ p.a.

EXPONENTS

- EXPONENTIAL FORM

Exponent Terminology

Instead of writing $2 \times 2 \times 2 \times 2 \times 2$,
Factor form
we can write
2^{5}
Exponential form
Terminology:
Power
Coefficient
Exponent

Base

- ZERO EXPONENT

Anything to the power of $0=1$

$a^{0}=1$
 (where $\mathbf{a} \neq 0$)

Examples:

- $4^{0}=1$

Only x is being raised to the power of 0

- $4 x^{0}=4 \times 1=4$
- $(4 x) 0=1 \quad$ Everything is being raised to the power of 0

\square MULTIPLYING EXPONENTS

When you are multiplying AND the bases are the same ... add the exponents

$$
a^{m} \times a^{n}=a^{m+n}
$$

Multiplying
Exponents

Examples:

- $x^{2} \cdot x^{3}=x^{2+3}=x^{5}$
$\neq x^{6}$
$4 x^{5} y^{2} \times 3 x^{3} y^{4}=12 x^{8} y^{6}$
- $2^{4} \times 2^{6}=2^{10}$

Add the exponents of the SAME bases

D DIVIDING EXPONENTS

When you are dividing AND the bases are the same ... subtract the exponents

$$
a^{m} \times a^{n}=a^{m-n}
$$

Dividing
Exponents

Examples:

- $x^{8} \div x^{2}=x^{8-2}=x^{6}$
$\neq x^{4}$
$12 x^{6} y^{9} \div 3 x^{3} y^{3}=4 x^{3} y^{6}$
$\cdot \frac{3^{10}}{3^{5}}=3^{5}$
Subtract the exponents of the SAME bases

- RAISING A POWER TO A POWER

When you raise a power to a power ... multiply the exponents

$$
\left(a^{m}\right)^{n}=a^{m n}
$$

Raising an
Exponent to a Power

Examples:

- $\left(x^{3}\right)^{2}=x^{3.2}=x^{6}$

$$
\neq x^{5}
$$

- $\left(4^{5}\right)^{6}=4^{30}$

- RAISING THE PRODUCT / QUOTIENT TO A POWER

When you raise the product / quotient to a power ... multiply the exponents of each factor

$$
(a b)^{m}=a^{m} b^{m} \quad \text { or } \quad\left(\frac{a}{b}\right)^{m}=\frac{a^{m}}{b^{m}}
$$

Examples:

- $\left(x^{2} y^{3}\right)^{4}=x^{2.4} y^{3.4}=x^{8} y^{12}$
- $\left(-3 x^{5}\right)^{3}=(-3)^{3} x^{15}=-27 x^{15}$
$\left(-2 x^{6}\right)^{4}=(-2)^{4} x^{24}=16 x^{24}$
Watch out for negative signs!

Exercise

Simplify:

1. $3 x^{0}+\left(3 x^{4}\right)^{0}$
2. $-6 a^{8} b^{5} \div 2 a^{4} b^{2}$
3. $\frac{81 x^{6} y^{9} z^{4}}{-3 x^{2} y^{5} z^{6}}$
4. $\left(\frac{-2 y^{3}}{x^{7}}\right)^{3}$
5. $x^{4} y^{8} z^{0} \times x^{3} y^{5} z^{8}$
6. $\left(\frac{-3 a^{4}}{b^{6}}\right)^{4}$

\square NEGATIVE EXPONENTS

If the exponent is NEGATIVE in the

 NUMERATOR ... move the factor to the denominator and make the exponent POSITIVE$\underset{\text { Exponents }}{\text { Negative }} \quad a^{-n}=\frac{1}{a^{n}}$
5 \& b have positive exponents, so they stay at the top!
Examples:

- $5 a^{-2} b^{3} c^{-4}=\frac{5 b^{3}}{a^{2} c^{4}}$
- $\left(2 x^{8} y^{3}\right)^{-2}=\frac{1}{\left(2 x^{8} y^{3}\right)^{2}}=\frac{1}{4 x^{16} y^{6}}$

The whole term has a negative power

\square NEGATIVE EXPONENTS

If the exponent is NEGATIVE in the DENOMINATOR ... move the factor to the numerator and make the exponent POSITIVE

$$
\frac{1}{a^{-n}}=a^{n}
$$

$4 \& y^{6}$ have positive exponents, so they don't move!
Examples:

$$
\begin{aligned}
& \text { - } \frac{4}{x^{-5} y^{6} z^{-7}}=\frac{4 x^{5} z^{7}}{y^{6}} \\
& -\frac{1}{\left(-2 x^{9}\right)^{-3}}=\left(-2 x^{9}\right)^{3}=-8 x^{27}
\end{aligned}
$$

The whole term has a negative power

Exercise

Simplify:

$$
\begin{aligned}
& \text { 1. } 6 x^{-3} y^{-4} \\
& \text { 2. }-4 a b^{-3}
\end{aligned}
$$

$$
\text { 3. } \frac{1}{x^{2} y^{-5} z^{-6}}
$$

$$
\text { 4. } \frac{-6 a^{3}}{b^{-9}}
$$

$$
\text { 5. } x^{-4} y^{7} z^{-5} \times x^{6} y^{-2} z^{8}
$$

$$
\text { 6. }\left(\frac{4 a^{-7}}{b^{2}}\right)^{-2}
$$

$$
\text { 7. } \frac{3 x^{7}}{\left(9 x^{8}\right)^{-2}}
$$

\square EXPONENTIAL EQUATIONS

* If the bases are the same, equate the exponents
* If the bases are not the same, prime factorize them and then equate the exponents

Examples:

- $2^{x}=2^{9}$

$$
\therefore x=9
$$

Bases the same ... exponents equal!

Examples:

- $5^{3 x}=5^{12}$

Complex Exponential Equations
$3 x=12$
$\therefore x=4$
$3^{x}=27$
$\begin{aligned} 3^{x} & =3^{3}\end{aligned}$
$\therefore x=3$

- $4.2^{2 x}=32$

$$
\begin{aligned}
2^{2 x} & =8 \\
2^{2 x} & =2^{3} \\
\therefore 2 x & =3
\end{aligned}
$$

First divide by 4, so that 1 factor = 1 factor - thereafter make the bases the same and solve
Make the bases the same by means of prime factorization

$$
\therefore x=1,5
$$

Exercise

Solve for x :

1. $2^{6 x}=2^{12}$
2. $3^{4 x+2}=3^{10 x}$
3. $7^{x}=49$
4. $5^{2 x}=25$
5. $3.2^{x}=24$
6. $9.3^{3 x}=81$
7. $8^{x}=32^{x}$
8. $-4^{x}=16$

- SCIENTIFIC NOTATION

* Used to write really big or really small numbers in a compact way
in scientific notation, move the decimal comma unti after the first nonzzero digit and then multiply by ten to the power of ($\times 10 \cdots$) how ever many places you moved the decimal comma
* Really big numbers will have a positive exponent ... i.e. $\times 10^{\text {positive no }}$
* Really small numbers will have a negative exponent.. i.e. $\times \mathbf{1 0}^{\text {negative no }}$

Examples:

Scientific Notation

- $246=2,46 \times 10^{2}$
- Decimal comma after first non-zero digit (4)
> Big no \ldots.. so $\times 10^{\text {pos.no }}$
$>$ Decimal moved 2 places
- $5890221=5,890221 \times 10^{6}$
- $4020000000000=4,02 \times 10^{12}$

Examples:

- $0,000357=3,57 \times 10^{-4}$
> Decimal comma after first non-zero digit (3)
$>$ Small no \ldots so $\times 10^{\text {neg.no }}$
$>$ Decimal moved 4 places
- $0,000000042=4,2 \times 10^{-8}$
- $0,005055000000=5,055 \times 10^{-3}$

Exercise

Write the following numbers in scientific notation:

1. 66789
2. 0,432
3. 1083201
4. 0,000096
5. 12121000000000 6. 0,000000000080

INTEGERS

\square THE NUMBER LINE

The Number Line in Life

- 100 is bigger than 50 $. . .100>50$
$\ldots .-100<-500$
- 0 is smaller than 2
... $0<2$
- 0 is bigger than -2
... $0>-2$

$\leftrightarrow+\mid \longrightarrow$
 $-\infty ; \ldots-100 ; \ldots 0 ; \ldots ; 100 ; \ldots ;+\infty$

- Increase 100 by 50.
$100+50=150$
- Increase -100 by 50 .
$-100+50=-50$
Move 50 units to the RIGHT
- Decrease 100 by 50 . $100-50=50$

Decrease -100 by 50 .
Move 50 units to the LEFT

Exercise

1. Fill in $>$ or $<$:
$1.123 \ldots-2$
$\begin{array}{llll}1.2 & -41 & \text {... } 67\end{array}$
1.383 ... 32
1.4-49 ... -88
1.5-101 ... -100
$1.6 \quad 0 \quad . .7$
$1.7-7 \ldots 0$

Exercise

2. Increase 30 by 40.
3. Decrease 30 by 40 .
4. Increase 66 by 22.
5. Decrease 66 by 22.
6. Increase -10 by 25.
7. Decrease -10 by 25.

\square SIGNS OF NUMBERS

A number can either be:
n- Positive eg. 5 or +5

- Negative e.g.-5

Multiplying (or dividing) signs:

- $+x+=+$
- $-x-=+$

Same sign ... answer POSITIVE

- $+x-=+$
- $-x+=+$

Different sign ... answer NEGATIVE

\square MULTIPLYING INTEGERS

$$
=10
$$

$$
+2 x+5=+10
$$

$$
\text { - } 2 \times-5
$$

$$
=-10
$$

$$
+2 \times-5=-10
$$

$$
=10
$$

$$
-2 \times-5=+10
$$

$$
\text { " }-2(5)
$$

$$
=-10
$$

$$
-2 x+5=-10
$$

Note the different ways of writing multiplication \ldots Dot, \times and Brackets!

\square DIVIDING INTEGERS

$$
-8 \div-4=+2
$$

- $8 \div-4$

$$
=-2
$$

$$
-8 \div+4=-2
$$

$$
+8 \div-4=-2
$$

Divisibility Rules

\square ADDING \& SUBTRACTING INTEGERS

$$
\begin{aligned}
& (3)+(+4) \\
& =3+4 \\
& =7
\end{aligned}
$$

$$
-1 \times+4=-4
$$

$$
\text { - }(3)+(-4)
$$

$$
=3-4
$$

$$
=-1
$$

$$
-1 \times+4=-4
$$

\square ADDITIVE INVERSE

The additive inverse is the number that you must add to another to give a total of zero

Examples:

$$
-8 \ldots+8=0
$$

+8 is the additive inverse of -8

- $8 \quad . .-8=0$
-8 is the additive inverse of 8

\square COMMUNICATIVE PROPERTY

$$
x+y=y+x
$$

Examples:

$$
\begin{array}{ll}
\text { - } 5+6=6+5 & \cdots=11 \\
\text { - }-5+6=6+(-5) & \ldots=6-5=1
\end{array}
$$

Note! Use brackets to keep the negative sign

ASSOCIATIVE PROPERTY

Grouping inegers to make adarition or subtraction easier, does not change the answer!
$a-b+c-d=(a+c)-(b+d)$

Example:

- $7-8+3-2=(7+3)-(8+2)$
$=10-(10)$
$=10-10$
$=0$
Addition Properties

Exercise

Calculate:

$$
\begin{array}{ll}
\text { 1. } 5+(+9) & \text { 6. }-3 \times-5 \\
\text { 2. } 5-(+9) & \text { 7. }-6 \div-2 \\
\text { 3. } 5+(-9) & \text { 8. } 7(-2) \\
\text { 4. } 5-(-9) & \text { 9. }(-4)(-6) \\
\text { 5. } \frac{8}{-2} & \text { 10. } \frac{4}{-16}
\end{array}
$$

Exercise

11. What is the additive inverse of:

$$
\begin{array}{cc}
11.1 & 16 \\
11.2 & -9
\end{array}
$$

12. Calculate:

$$
\begin{array}{ll}
12.1 & -3+8-7+1 \\
12.2 & 12-9-11+21
\end{array}
$$

- SQUARES \& CUBES

Squaring

- Examples:
i) $5^{2}=5 \times 5=25$
ii) $(-7)^{2}=-7 \times-7=49$
iii) $-4^{2}=-(4 \times 4)=-16$

Cubing

- Multiplying a number by itself three times
- Examples:
i) $2^{3}=2 \times 2 \times 2=8$
ii) $(-3)^{3}=-3 \times-3 \times-3=-27$
iii) $-5^{3}=-(5 \times 5 \times 5)=-125$

\square SQUARE ROOTS

Square-Rooting

What number multiplied by itself gives us

the question?

- Examples:
i) $\sqrt{16}=4$

Understanding
Square Roots
ii) $\sqrt{81}=9$
iii) $\sqrt{-25}=$ undefined

$$
\begin{gathered}
+5 x+5=25 \text { and }-5 \times-5=25 \\
\text { Can never get -25! }
\end{gathered}
$$

- CUBE ROOTS

Cube-Rooting

What number multiplied by itself three times gives us the question?

- Examples:

$$
\text { i) } \sqrt[3]{125}=5
$$

Understanding
Cube Roots
ii) $\sqrt[3]{27}=3$
iii) $\sqrt[3]{-8}=-2$

$$
\begin{gathered}
-2 \times-2 \times-2=-8 \\
\text { Can get -8! } \\
\hline
\end{gathered}
$$

Exercise

Calculate:

1. $\sqrt{36}$
2. $\sqrt[3]{8}$
3. 4^{3}
4. 8^{2}
5. $(-9)^{2}$
6. $\sqrt{-64}$
7. -5^{2}
8. -3^{3}
9. $(-2)^{3}$
10. $\sqrt[3]{-27}$

COMMON FRACTIONS

$$
\begin{aligned}
& 2(2) 500_{5}^{3} 7^{-0}{ }_{2}^{-0} 3
\end{aligned}
$$

\square COMMON FRACTIONS

* A number that is written as $\frac{x}{y}$, where x (numerator) and y (denominator) are whole numbers and $\boldsymbol{y} \neq \mathbf{0}$.
* Common fractions are divided into:
i) Proper fractions
- numerator < denominator e.g. $\frac{2}{3}$
ii) Improper fractions
- denominator > numerator e.g. $\frac{3}{2}$
iii) Mixed fractions
- whole number + fraction e.g. $1 \frac{2}{3}$

\square MULTIPLYING FRACTIONS

$$
\frac{a}{b} \times \frac{c}{d}=\frac{a \times c}{b \times d}=\frac{a c}{b d}
$$

Examples:

Multiplying
Fractions

1. $\frac{2}{3} \times \frac{4}{5}=\frac{2 \times 4}{3 \times 5}=\frac{8}{15}$	Simplify the fraction by
2. $\frac{2}{7} \times \frac{5}{6}=\frac{2 \times 5}{7 \times 6}=\frac{10}{32}$	dividing by the highest common factor $\ldots=2$
$\frac{5}{16}=\frac{10}{32}$	$=\frac{5}{16}$

3. $\frac{x^{2}}{8 y} \times \frac{y^{4}}{z^{3}} \times \frac{6 z^{5}}{x^{3}}=\frac{6 x^{2} y^{4} z^{5}}{8 y z^{3} x^{3}}$
e.g. More x's at bottom by

Method 2: Use exponent laws

1; More y's at top by 3 etc.
$=\frac{3 y^{3} z^{2}}{4 x}$ top
$=\frac{6 x^{2-3} y^{4-1} z^{5-3}}{8}$

$$
=\frac{6 x^{-1} y^{3} z^{2}}{8}
$$

Subtract exponents

$$
=\frac{3 y^{3} z^{2}}{4 x}
$$ when dividing

Only change negative exponents to positive exponents when asked! But look - same answer!

D DIVIDING FRACTIONS

$$
\frac{a}{b} \div \frac{c}{d}=\frac{a}{b} \times \frac{d}{c}=\frac{a \times d}{b \times c}=\frac{a d}{b c}
$$

Examples:
Reciprocal

1. $\frac{2}{7} \div \frac{5}{6}=\frac{2}{7} \times \frac{6}{5}=\frac{2 \times 6}{7 \times 5}=\frac{12}{35}$
2. $\frac{2}{3} \div \frac{4}{5}=\frac{2}{3} \times \frac{5}{4}=\frac{2 \times 5}{3 \times 4}=\frac{10}{12}$
$\frac{10}{12}=\frac{5}{6}$ equivalent fractions $=\frac{5}{6}$
Simplify:
Divide by HCF $=2$

Dividing Fractions

3. $\frac{x^{2}}{8 y} \div \frac{y^{4}}{z^{3}} \div \frac{6 z^{5}}{x^{3}}=\frac{x^{2}}{8 y} \times \frac{z^{3}}{y 4} \times \frac{x^{3}}{6 z^{5}}$

Simplify by adding $=\frac{x^{2} \times z^{3} \times x^{3}}{8 y \times y^{4} \times 6 z^{5}}$ exponents of same bases

$$
=\frac{x^{5} z^{3}}{48 y^{5} z^{5}}
$$

Method 1: "Where are there more and $=\frac{x^{5}}{48 y^{5} z^{2}}$ by how many"

$$
\begin{aligned}
& =\frac{x^{5} z^{-2}}{48 y^{5}} \\
& =\frac{x^{5}}{48 y^{5} z^{2}}
\end{aligned}
$$

Exercise

Evaluate:

$$
\text { 1. } \frac{12}{9} \times-\frac{3}{5}
$$

$$
\text { 2. } 5 \frac{3}{4} \div \frac{3}{2}
$$

$$
\text { 3. } \frac{6 x^{3}}{7 y^{2}} \times \frac{14 y^{4}}{2 x^{7}}
$$

$$
\text { 4. } \frac{a^{2} b^{3}}{5 c^{4}} \div \frac{a^{4} b^{4}}{15 c^{4}}
$$

$$
\text { 5. } \frac{25 x^{6}}{4 y} \times \frac{2 y^{3}}{15 x^{8}} \div \frac{3 x}{6 y^{9}}
$$

\square ADDING \& SUBTRACTING FRACTIONS

$$
\frac{a}{c}+\frac{b}{c}=\frac{a+b}{c} \quad \text { or } \quad \frac{a}{c}-\frac{b}{c}=\frac{a-b}{c}
$$

Examples:

1. $\frac{2}{3}+\frac{4}{3}=\frac{2+4}{3}=\frac{6}{3}=\frac{2}{1} \quad \frac{-1}{2}=\frac{1}{-2}=-\frac{1}{2}$
2. $\frac{2}{6}-\frac{5}{6}=\frac{2-5}{6}=\frac{-3}{6}=\frac{-1}{2}$

ADDING \& SUBTRACTING

 FRACTIONS$$
\frac{a}{e}+\frac{b}{f}=\frac{a f+b e}{e f}
$$

Step 1:

Find the Lowest Common Denominator (LCD)

Step 2:

Find the numerator by doing the following:

$$
\frac{L C D}{\text { denominator }} \times \text { numerator }
$$

$$
\begin{aligned}
& \text { 3. } \frac{3}{4}+\frac{2}{5} \\
&=\frac{\text { Step 1: }}{20} \text { LCD }=20! \\
&=\frac{5(3)+4(2)}{20} \\
&=\frac{\text { Step 2: }}{23} \\
&=\frac{\text { LCD }}{\text { deminator }} \times \text { numeral } \\
& \text { i.e. } \frac{20}{4} \times 3 \text { and } \frac{20}{5} \times 2
\end{aligned}
$$

Adding \& Subtracting Fractions with Unlike Denominators

4. $\frac{3}{2 x y^{2}}-\frac{4}{7 x^{3} y}$
 $=\frac{7 x^{2}(3)-2 y(4)}{14 x^{3} y^{2}}$
 $=\frac{21 x^{2}-8 y}{14}$

Unlike terms, so we can't simplify further

Step 2:
LCD
$\overline{\text { denominator }} \times$ numerator
i.e. $\frac{14 x^{3} y^{2}}{2 x y^{2}} \times 3$ and $\frac{14 x^{3} y^{2}}{7 x^{3} y} \times 4$

Exercise

Evaluate:

$$
\begin{aligned}
& \text { 1. } 4 \frac{2}{3}+\frac{1}{5} \\
& \text { 2. } \frac{1}{2}-\frac{2}{7} \\
& \text { 3. } \frac{8 y}{x}-\frac{4 x}{y}
\end{aligned}
$$

$$
\text { 4. } \frac{6}{x y^{3}}+\frac{1}{x^{2} y}
$$

$$
\text { 5. } \frac{1}{2 y}+\frac{3}{10 y}-\frac{5}{4 y}
$$

I SQUARES, SQUARE ROOTS, CUBES \& CUBE ROOTS IN FRACTIONS

* Simplify fraction as far as possible before squaring, cubing or rooting
* Apply operation to numerator and denominator

Examples:

1. $\left(\frac{2}{3}\right)^{2}=\frac{2^{2}}{3^{2}}=\frac{4}{9}$

Remember your exponent laws!
2. $\left(-\frac{3}{2}\right)^{3}=\frac{(-3)^{3}}{2^{3}}=-\frac{27}{8} \quad \begin{gathered}\text { Beware of } \\ \text { the negative! }\end{gathered}$

> 3. $\sqrt{1 \frac{9}{16}}=\sqrt{\frac{25}{16}}=\frac{\sqrt{25}}{\sqrt{16}}=\frac{5}{4}\left\{\begin{array}{c}\text { Changed } \\ \text { mixed } \\ \text { fraction into } \\ \text { improper } \\ \text { fraction first! }\end{array}\right.$ 4. $\sqrt[3]{-\frac{1}{8}}=\frac{\sqrt[3]{-1}}{\sqrt[3]{8}}=-\frac{1}{2}$
5. $\left(\frac{2}{3}-\frac{5}{4}\right)^{2}=\left(\frac{4(2)-3(5)}{12}\right)^{2}$

Exercise

Evaluate:

$$
\begin{aligned}
& \text { 1. }\left(\frac{1}{5}-2\right)^{2} \\
& \text { 2. }\left(3 \frac{1}{2}+\frac{2}{3}\right)^{3} \\
& \text { 3. } \sqrt{6 \frac{1}{4}} \\
& \text { 4. } \sqrt[3]{3 \frac{3}{8}}
\end{aligned}
$$

DECIMAL FRACTIONS

CONVERTING A FRACTION TO A DECIMAL

Mulipily boin hite numeralor and denominator by a number, in order to get the denominator to a power of 10.
Examples:
Note that $\frac{2}{2}=1$, so we haven't changed the question!
2. $\frac{3}{4}=\frac{3}{4} \times \frac{25}{25}=\frac{75}{100}=0,75$
3. $\frac{7}{8}=\frac{7}{8} \times \frac{125}{125}=\frac{875}{1000}=0,875$

Converting between
Fractions and Decimals

Exercise

Convert the following to decimals:

1. $\frac{2}{5}$
2. $\frac{3}{8}$
3. $\frac{27}{25}$
4. 19\%
5. 202\%

\square ADDING \& SUBTRACTING DECIMALS

Write down the numbers in a column, making sure that the decimals are all lined up (so fill in zero's (0) if need be!)

Example:
$0,34+0,5+0,123: \quad 0,340$
$+0,500$
$+0,123$
$=0,963$

Note how the zero's are added as place holders!

ADDING \& SUBTRACTING

 DECIMALSUse the associative property of integers ...i.e.
$a-b+c-d=(a+c)-(b+d)$
Example:

$$
\begin{aligned}
& 9,72-3,1+1,8-2,505 \\
& =(9,72+1,8)-(3,1+2,505)
\end{aligned}
$$

$$
9,72 \quad 3,100 \quad 11,520
$$

$$
\begin{aligned}
& +1,80 \\
& =11,52 \\
& =5,605
\end{aligned}=5,505=5,605
$$

Add each bracket separately and then subtract!

Exercise

Simplify without the use of a calculator:

1. $3,425+5,89+7,1$
2. $8,99-1,4-3,764$
3. $7,2-3,66+2,105$
4. $3,89+5,6-6,022$
5. $29+6,3-7,884-1,26$

- MULTIPLYING DECIMALS

fractions

* Then multiply the numerators and denominators
* Lastly, convert back into a decimal

Multiplying \& Dividing Decimal
Fractions

Examples:

1. $0,5 \times 0,3=\frac{5}{10} \times \frac{3}{10}=\frac{15}{100}=0,15$
2. $0,09 \times 0,2=\frac{9}{100} \times \frac{2}{10}=\frac{18}{1000}=0,018$
3. $4,1 \times 2,07=\frac{41}{10} \times \frac{207}{100}=\frac{8487}{1000}=8,487$

] DIVIDING DECIMALS

Examples:

First convert the

* Then divide by the method of "tip \& times"
* Then multiply the numerators and
denominators \& simplify
* Lastly, convert back into a decimal

1. $4,2 \div 1,2=$

$$
\frac{42}{10} \div \frac{12}{10}
$$

$$
=\frac{42}{10} \times \frac{10}{12}
$$

$$
=\frac{420}{120}
$$

$$
=\frac{7}{2}
$$

$$
=3.5
$$

Examples:

$$
\begin{aligned}
\frac{55}{10} & \div \frac{11}{10} & & =\frac{2688}{100} \div \frac{64}{10} \\
& =\frac{55}{10} \times \frac{10}{11} & & =\frac{2688}{100} \times \frac{10}{64} \\
& =\frac{550}{110} & & =\frac{26880}{6400} \\
& =\frac{5}{1} & & =\frac{21}{5} \\
& =5,0 & & =4,2
\end{aligned}
$$

Exercise

Simplify without a calculator:

1. $6,67 \times 2,3$
2. $13,8 \div 6$
3. $3,5 \times 8,07$
4. $15,87 \div 6,9$
5. $12,6 \times 4,02 \div 1,1$

SQUARES, SQUARE ROOTS, CUBES \& CUBE ROOTS IN DECIMALS

* First convert the
decimal to a fraction
* Then square, cube or root the fraction
* Remember to apply the exponent laws to the numerator \& denominator
* Lastly, convert back into a decimal

Examples:

$$
\text { 1. }\left(\frac{7}{10}\right)^{2}
$$

$$
=\frac{7^{2}}{10^{2}}
$$

$$
=\frac{49}{100}=0,49
$$

Examples:

$$
\begin{aligned}
& \begin{array}{lll}
\left(\frac{2}{10}\right)^{3} & \sqrt{\frac{81}{100}} & \sqrt[3]{\frac{125}{1000}} \\
=\frac{2^{3}}{10^{3}} & =\frac{\sqrt{81}}{\sqrt{100}} & =\frac{\sqrt[3]{125}}{\sqrt[3]{1000}} \\
=\frac{8}{1000} & =\frac{9}{10} & =\frac{5}{10} \\
=0,008 & =0,9 & =0,5
\end{array}
\end{aligned}
$$

Exercise

Simplify:

1. $(0,12)^{2}$
2. $(0,003)^{3}$
3. $\sqrt{0,121}$
4. $\sqrt[3]{0,027}$
