Euclidean Geometry
 Gr 11
 Theorems

Theorem 1
Theorem 2

The line drawn from the centre of a circle perpendicular to a chord bisects the chord.

In $\triangle O A B$ and $\triangle O C B$
(i) $\mathrm{OA}=\mathrm{OC} \quad$ [radii]
(ii) $\mathrm{OB}=\mathrm{OB}$ [common]
(iii) $\hat{B}_{1}=\hat{B}_{2}=90^{\circ} \quad$ [given; $\left.O B \perp A C\right]$
$\therefore \triangle \mathrm{OAB} \equiv \triangle O C B$ [hyp; $90^{\circ} \angle$;side]
$A B=B C$ [from congruency]

The perpendicular bisector of a chord contains the centre of the circle

Statement	Reason
In $\triangle C A D$ and $\triangle C B D$,	
$A D=D B$	Given
$\angle C D A=\angle C D B$	$C D \perp$ to $A B$
$C D=C D$	Reflexive proerty
$\triangle C D A$ and $\triangle C D B$	SAS
$C A=C B$	Congruent triangles
Q is center of circle	The center of the circle is the only point within the circle that has points on the circumferenc: equal distance from it.

Statement CBD
$\angle C D A=\angle C D B$
$C D=C D$
$\triangle C D A$ and $\triangle C D B$
$C A=C B$
Q is center of circle

Reason

Given
$C D \perp$ to $A B$
SAS
Congruent triangles
The center of the circle is the only point equal distance from it.

Theorem 3

The angle subtended by an arc at the centre of a circle is double the size of the angle subtended by the same arc at the circle (on the same side of the chord as the centre).

$$
\begin{aligned}
& \angle \text { at centre }=2 \times \angle \text { at } \\
& \text { circumference }
\end{aligned}
$$

Given: Circle with centre O and arc
$A B$ subtended $A \hat{O} B$ at the
centre and $A \hat{C B}$ on the
circumference.
To Prove: $\hat{B O} C=2 \hat{B} \hat{A C}$
Construction: Draw AO extended.
Proof:

In diagram A, B and C:
Let $\quad \hat{A}_{1}=x$ and $\hat{A}_{2}=y$

$$
O A=O B \quad[\text { radii] }]
$$

$\hat{A}_{1}=\hat{B}=x$ [<s opp equal sides]
$\hat{O}_{1}=\hat{A}_{1}+\hat{B} \quad[$ ext $<$ of $\Delta]$
$\therefore \hat{O}_{1}=2 x$
$\therefore \hat{O}_{1}=2 \hat{A}_{1}$
Similarly $\hat{O}_{2}=2 y$
$\therefore \hat{O}_{2}=2 \hat{A}_{2}$
In diagrammes A and C :

$$
\begin{aligned}
\hat{O}_{1}+\hat{O}_{2} & =2 x+2 y \\
& =2(x+y) \\
A O B & =2 A C B
\end{aligned}
$$

In diagram B :

$$
\hat{O}_{2}-\hat{O}_{1}=2\left(\hat{C}_{2}-\hat{C}_{1}\right)
$$

$A \hat{O} B=2 \hat{A C B}$

Theorem 4

To Prove that angles subtended by an arc or chord in the same segment are equal.

To prove that angle $C A B=$ angle $B D C$
-With centre of circle O draw lines $O B$ and $O C$.

- Angle $C O B=2 \times$ angle $C A B$ (Theorem 1). - Angle $C O B=2 \times$ angle $B D C$ (Theorem 1). - $2 x$ angle $C A B=2 x$ angle $B D C$
- Angle $C A B=$ angle $B D C$

Theorem 6

To prove that the two tangents drawn from a point outside a circle are of equal length.

To prove that $A P=B P$.
-With centre of circle at O, draw straight lines $O A$ and $O B$.

- $O A=O B$ (radii of the same circle)
- Angle PAO $=$ PBO $=90^{\circ}$ (tangent radius).
- Draw straight line OP
-In triangles $O B P$ and $O A P, O A=O B$ and $O F$ is common to both.
-Triangles OBP and OAP are congruent (RHE
-Therefore AP = BP. QED

Theorem 5

To prove that the opposite angles of a cyclic quadrilateral are supplementary (Sum to 180°).

To prove that angles $A+C$ and $B+D=180^{\circ}$

- Draw straight lines $A C$ and $B D$
-Chord DC subtends equal angles α (same segment)
-Chord AD subtends equal angles β (same segment)
-Chord $A B$ subtends equal angles γ (same segment)
Chord $B C$ subtends equal angles δ (same segment)
$2(\alpha+\beta+\gamma+\delta)=360^{\circ}($ Angle sum quadrilateral $)$
$\alpha+\beta+\gamma+\delta=180^{\circ}$
Angles $A+C$ and $B+D=180^{\circ} \quad$ QED

α	β	γ	δ
alpha	beta	gamma	delta

Theorem 7

To prove that the angle between a tangent and a chord through the point of contact is equal to the angle subtended by the chord in the alternate segment.

```
- With centre of circle \(O\), draw straight lines \(O D\) and \(O T\).
-Let angle DTB be denoted by \(\alpha\).
-Then angle DTO =90- \(\alpha\) (Theorem 4 tan/rad)
- Also angle TDO =90- \(\alpha\) (Isos triangle)
-Therefore angle TOD \(=180-(90-\alpha+90-\alpha)\)
\(=2 \alpha\) (angle sum triangle)
```

-Angle $T C D=\alpha$ (Theorem 1 angle at the centre)

- Angle $B T D=$ angle $T C D$

QED

