GRADE 11

Trigonometry

WEBSITE NOTES 2

TOPIC: Trig functions and revision grade 10 trigonometry

- Basic graphs defined by $y = a \sin x$, $y = a \cos x$ and $y = \tan x$ for $\theta \in [-360^{\circ}, 360^{\circ}]$
- Investigate the effect of k and p on the graphs of the functions defined by: $y = \sin(kx)$, $y = \cos(kx)$, $y = \tan(kx)$
- $y = \sin(x + p)$, $y = \cos(x + p)$, $y = \tan(x + p)$

GENERAL EQUATIONS OF TRIG FUNCTIONS

$$y = a \sin b(x + p) + q$$

a	Amplitude			
b	Compress the graph of $f(x)$ horizontally by a factor of b. For Trig graphs it will decrease			
	the period.			
p	Shifts the graph left or right by p units (if p is positive then it will shift left)			
q	Shifts the graph up or down by q units			

• To work out your critical values (values where the graph cuts the x-axis – **the intervals**)

$$Period = \frac{360^{\circ}}{b}$$

$$Intervals = \frac{Period}{4}$$

$$y = a \cos b(x + p) + q$$

a	Amplitude				
b	Compress the graph of f(x) horizontally by a factor of b. For Trig graphs it will decrease				
	the period.				
p	Shifts the graph left or right by p units (if p is positive then it will shift left)				
\overline{q}	Shifts the graph up or down by q units				

• To work out your critical values (values where the graph cuts the x-axis – **the intervals**)

$$Period = \frac{360^{\circ}}{b}$$

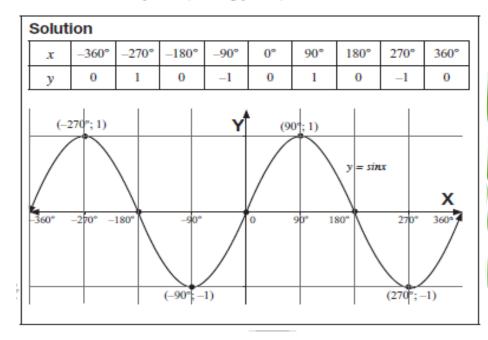
$$Intervals = \frac{Period}{4}$$

$$y = a \tan b(x + p) + q$$

a	The value of <i>a</i> affects the <i>y</i> -value of each point. Each <i>y</i> -value is multiplied by <i>a</i> .				
b	Compress the graph of $f(x)$ horizontally by a factor of b. For Trig graphs it will decrease				
	the period.				
p	Shifts the graph left or right by p units (if p is positive then it will shift left)				
q	Shifts the graph up or down by q units				

• To work out your critical values (values where the graph cuts the x-axis – **the intervals**)

$$Period = \frac{180^{\circ}}{b}$$


$$Intervals = \frac{Period}{4}$$

Revision of Trig Functions

Example 1

Sketch the graph of $y = \sin x$ for x

- We can make use of a table or a calculator to determine the critical points on the graph.
- The endpoints of the domain must be included i.e.
 x = -360° and x = 360°
- All intercepts with the x and y axis must be indicated as well as all minimum and maximum points (turning points)

Domain: all the possible x values on the graph
Range: all the possible yvalues on the graph
Amplitude: the maximum
distance from the equilibrium
position(in the above graph
the equilibrium position is the x-axis.

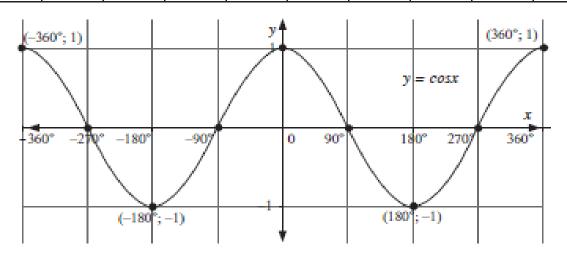
Period: number of degrees to complete a wave or a cycle.

Example 2

Use the graph $y = \sin x$ above to answer these questions:

- 1. What are the maximum and minimum values of $y = \sin x$? (2)
- 2. Write down the domain and the range of $y = \sin x$. (4)
- 3. Write down the x-intercepts of $y = \sin x$. (2)
- 4. What is the amplitude of the graph of $y = \sin x$? (1)
- 5. What is the period of the graph of $y = \sin x$? (1)

[10]


		$y = \sin x$	
1	Maximum Values	1 ✓ , at $x = -270^{\circ}$ and 90°	
	Minimum Values	$-1 $ \checkmark , at $x = -90^{\circ}$ and 270°	(2)
2	Domain	$x \in [-360^{\circ};360^{\circ}], x \in \mathbb{R} \checkmark \checkmark$	
	Range	[-1; 1] <i>y</i> ∈ ℝ √ ✓	(4)
3	x-intercepts	-360°, -180°, 0°, 180° and 360°.✓✓	(2)
4	Amplitude	1√	(1)
5	Period	360°√	(1)

Example 3

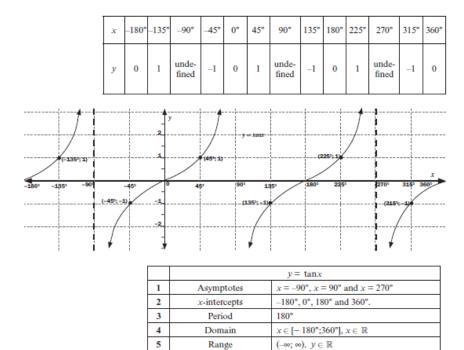
Sketch the graph of $y = \cos x$ for $x \in [-360^{\circ}; 360^{\circ}]$

- We can make use of a table or a calculator to determine the critical points on the graph.
- The endpoints of the domain must be included i.e.
 x = -360° and x = 360°
- All intercepts with the x and y axis must be indicated as well as all minimum and maximum points (turning points)

х	-360°	–270°	-180°	−90°	0°	90°	180°	270°	360°
у	1	0	-1	0	1	0	-1	0	1

Example 4

For $y = \cos x$


$y = \cos x$				
Maximum Values	1, at $x = 0^{\circ}$ and 360°			
Minimum Values	-1 , at $x = -180^{\circ}$ and 180°			
x-intercepts	–270°, –90°, 90° and 270°.			
Amplitude	1			
Period	360°			
Domain	$x \in [-360^\circ;360^\circ], x \in \mathbb{R}$			
Range	$[-1;1] y \in \mathbb{R}$			

Example 5

Sketch the graph of $y = \tan x$ for $x \in [-180^\circ;180^\circ]$

- All intercepts with the x and y axis must be indicated.
- The endpoints of the domain must be included i.e.
 x = -180° and x = 360°
- · The equations of the asymptotes must be written on the graph.

Answer

Example 6 (Try yourself)

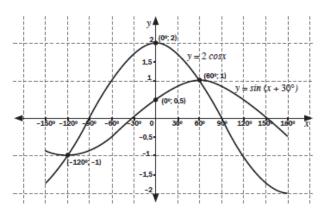
- 1. Given $f(x) = 2\cos x$ and $g(x) = \sin(x + 30^{\circ})$
 - a) Sketch the graphs of f and g on the same set of axes for x ∈ [-150°; 180°]

Clearly show all intercepts with the axes and the coordinates of turning points. (7)

Use your graph to answer the following questions:

c) For which values of x is
$$f(x) = g(x)$$
? (2)

d) For which values of
$$x$$
 is $f(x) > 0$? (2)


e) For which values of
$$x$$
 is $g(x)$ increasing? (2)

f) Determine one value of x for which
$$f(x) - g(x) = 1.5$$
. (1)

h) If the curve of g is moved 45° to the left, write down the new equation of g. (2)

Answers

c)
$$x = -120^{\circ} \text{ or } 60^{\circ} \checkmark \checkmark$$
 (2)

d) for
$$f(x) > 0$$
; $x \in (-90^\circ; 90^\circ) \checkmark \checkmark$ (2)

e)
$$g(x)$$
 increasing when $x \in (-120^\circ; 60^\circ) \checkmark \checkmark$ (2)

$$f) \quad x = 0^{\circ} \checkmark \tag{1}$$

g) New
$$f(x) = 2\cos x - 1 \checkmark \checkmark$$
 (2)

h) Original equation: $g(x) = \sin(x + 30^\circ)$, with 45° shift to the left:

$$g(x) = \sin(x + 30^\circ + 45^\circ)$$
 so $g(x) = \sin(x + 75^\circ)$

(7)