GRADE 11 Trigonometry WEBSITE NOTES 2

TOPIC: Trig functions and revision grade 10 trigonometry

- Basic graphs defined by $y = a \sin x$, $y = a \cos x$ and $y = \tan x$ for $\theta \in [-360^{\circ}; 360^{\circ}]$
- Investigate the effect of *k* and *p* on the graphs of the functions defined by:
- $y = \sin (kx), y = \cos (kx), y = \tan (kx)$ • $y = \sin(x + p), y = \cos(x + p), y = \tan(x + p))$

GENERAL EQUATIONS OF TRIG FUNCTIONS

$y = a \sin b(x + p) + q$

a	Amplitude				
b	Compress the graph of $f(x)$ horizontally by a factor of b. For Trig graphs it will decrease				
	the period.				
p	Shifts the graph left or right by p units (if p is positive then it will shift left)				
q	Shifts the graph up or down by q units				

• To work out your critical values (values where the graph cuts the x-axis – the intervals)

$$Period = \frac{360^{\circ}}{b}$$
$$Intervals = \frac{Period}{4}$$

$$y = a \cos b(x + p) + q$$

a	Amplitude					
b	Compress the graph of f(x) horizontally by a factor of b. For Trig graphs it will decrease					
	the period.					
p	Shifts the graph left or right by p units (if p is positive then it will shift left)					
q	Shifts the graph up or down by q units					

• To work out your critical values (values where the graph cuts the x-axis – the intervals)

$$Period = \frac{360^{\circ}}{b}$$
$$Intervals = \frac{Period}{4}$$

 $y = a \tan b(x + p) + q$

а	The value of <i>a</i> affects the <i>y</i> -value of each point. Each <i>y</i> -value is multiplied by <i>a</i> .					
b	Compress the graph of f(x) horizontally by a factor of b. For Trig graphs it will decrease					
	the period.					
р	Shifts the graph left or right by p units (if p is positive then it will shift left)					
q	Shifts the graph up or down by q units					

• To work out your critical values (values where the graph cuts the x-axis – **the intervals**)

$$Period = \frac{180^{\circ}}{b}$$
$$Intervals = \frac{Period}{4}$$

Revision of Trig Functions

Example 1

Sketch the graph of $y = \sin x$ for x

- We can make use of a table or a calculator to determine the critical points on the graph.
- The endpoints of the domain must be included i.e. x = -360° and x = 360°
- All intercepts with the x and y axis must be indicated as well as all minimum and maximum points (turning points)

Domain: all the possible *x* values on the graph Range: all the possible *y*values on the graph Amplitude: the maximum distance from the equilibrium position(in the above graph the equilibrium position is the x-axis.

Period: number of degrees to complete a wave or a cycle.

(2)

Example 2

Use the graph $y = \sin x$ above to answer these questions:

- What are the maximum and minimum values of y = sin x?
 (2)
- Write down the domain and the range of y = sin x.
- Write down the x-intercepts of y = sin x.
- 4. What is the amplitude of the graph of y = sin x? (1)
- 5. What is the period of the graph of $y = \sin x$? (1) [10]

Page 2 of 5

Solutions						
	$y = \sin x$					
1	Maximum Values	$1 \checkmark$, at $x = -270^{\circ}$ and 90°				
	Minimum Values	$-1 \checkmark, \text{ at } x = -90^{\circ} \text{ and } 270^{\circ}$	(2)			
2	Domain	$x \in [-360^\circ; 360^\circ], x \in \mathbb{R}\checkmark\checkmark$				
	Range	$[-1; 1] y \in \mathbb{R}\checkmark\checkmark$	(4)			
3	x-intercepts	–360°, –180°, 0°, 180° and 360°.√√	(2)			
4	Amplitude	11	(1)			
5	Period	360°√	(1)			
	•	•	[1			

Example 3

Sketch the graph of $y = \cos x$ for $x \in [-360^\circ; 360^\circ]$

- We can make use of a table or a calculator to determine the critical points on the graph.
- The endpoints of the domain must be included i.e. x = -360° and x = 360°
- All intercepts with the x and y axis must be indicated as well as all minimum and maximum points (turning points)

x	-360°	–270°	-180°	-90°	0°	90°	180°	270°	360°
у	1	0	-1	0	1	0	-1	0	1

Example 4

For $y = \cos x$

	$y = \cos x$				
Maximum Values	1, at $x = 0^{\circ}$ and 360°				
Minimum Values	-1 , at $x = -180^{\circ}$ and 180°				
x-intercepts	-270°, -90°, 90° and 270°.				
Amplitude	1				
Period	360°				
Domain	$x \in [-360^\circ; 360^\circ], x \in \mathbb{R}$				
Range	$[-1; 1] y \in \mathbb{R}$				

Example 5

Sketch the graph of $y = \tan x$ for $x \in [-180^\circ; 180^\circ]$

- All intercepts with the x and y axis must be indicated.
- The endpoints of the domain must be included i.e. x = -180° and x = 360°
- · The equations of the asymptotes must be written on the graph.

Answer

Example 6 (Try yourself)

equation of g.

1. Given $f(x) = 2\cos x$ and $g(x) = \sin (x + 30^\circ)$ a) Sketch the graphs of f and g on the same set of axes for $x \in [-150^\circ; 180^\circ]$ Clearly show all intercepts with the axes and the coordinates of turning points. (7)Use your graph to answer the following questions: b) Write down the period of f. (1)c) For which values of x is f(x) = g(x)? (2)d) For which values of x is f(x) > 0? (2)e) For which values of x is g(x) increasing? (2)Determine one value of x for which f(x) - g(x) = 1,5. f) (1)g) If the curve of f is moved down one unit, write down the new equation of f. (2)h) If the curve of g is moved 45° to the left, write down the new

(2)