GRADE 11

Trigonometry
 WEBSITE NOTES 2

TOPIC: Trig functions and revision grade 10 trigonometry

- Basic graphs defined by $y=a \sin x, y=a \cos x$ and $y=\tan x$ for $\theta \in\left[-360^{\circ} ; 360^{\circ}\right]$
- Investigate the effect of k and p on the graphs of the functions defined by:
$y=\sin (k x), y=\cos (k x), y=\tan (k x)$
- $\quad y=\sin (x+p), \quad y=\cos (x+p), y=\tan (x+p))$

GENERAL EQUATIONS OF TRIG FUNCTIONS

$y=a \sin b(x+p)+q$

a	Amplitude
b	Compress the graph of $\mathrm{f}(\mathrm{x})$ horizontally by a factor of b . For Trig graphs it will decrease the period.
p	Shifts the graph left or right by p units (if p is positive then it will shift left)
q	Shifts the graph up or down by q units

- To work out your critical values (values where the graph cuts the x -axis - the intervals)

$$
\begin{aligned}
\text { Period } & =\frac{360^{\circ}}{b} \\
\text { Intervals } & =\frac{\text { Period }}{4}
\end{aligned}
$$

$y=a \cos b(x+p)+q$

a	Amplitude
b	Compress the graph of $\mathrm{f}(\mathrm{x})$ horizontally by a factor of b . For Trig graphs it will decrease the period.
p	Shifts the graph left or right by p units (if p is positive then it will shift left)
q	Shifts the graph up or down by q units

- To work out your critical values (values where the graph cuts the x -axis - the intervals)

$$
\begin{aligned}
\text { Period } & =\frac{360^{\circ}}{b} \\
\text { Intervals } & =\frac{\text { Period }}{4}
\end{aligned}
$$

$y=a \tan b(x+p)+q$

a	The value of a affects the y-value of each point. Each y-value is multiplied by a.
b	Compress the graph of $\mathrm{f}(\mathrm{x})$ horizontally by a factor of b . For Trig graphs it will decrease the period.
p	Shifts the graph left or right by p units (if p is positive then it will shift left)
q	Shifts the graph up or down by q units

- To work out your critical values (values where the graph cuts the x -axis - the intervals)

$$
\begin{gathered}
\text { Period }=\frac{180^{\circ}}{b} \\
\text { Intervals }=\frac{\text { Period }}{4}
\end{gathered}
$$

Revision of Trig Functions

Example 1

Sketch the graph of $y=\sin x$ for x

- We can make use of a table or a calculator to determine the critical points on the graph.
- The endpoints of the domain must be included i.e.
$x=-360^{\circ}$ and $x=360^{\circ}$
- All intercepts with the x and y axis must be indicated as well as all minimum and maximum points (turning points)

Solution

x	-360°	-270°	-180°	-90°	0°	90°	180°	270°	360°
y	0	1	0	-1	0	1	0	-1	0

Example 2

Use the graph $y=\sin x$ above to answer these questions:

1. What are the maximum and minimum values of $y=\sin x$?
2. Write down the domain and the range of $y=\sin x$.
3. Write down the x-intercepts of $y=\sin x$.
4. What is the amplitude of the graph of $y=\sin x$?
5. What is the period of the graph of $y=\sin x$?

Solutions

	$y=\sin x$			
$\mathbf{1}$	Maximum Values	$1 \checkmark \quad$, at $x=-270^{\circ}$ and 90°		
	Minimum Values	$-1 \quad \checkmark$, at $x=-90^{\circ}$ and 270°	(2)	
$\mathbf{2}$	Domain	$x \in\left[-360^{\circ} ; 360^{\circ}\right], x \in \mathbb{R} \checkmark \checkmark$		
	Range	$[-1 ; 1] \quad y \in \mathbb{R} \checkmark \checkmark$	(4)	
$\mathbf{3}$	x-intercepts	$-360^{\circ},-180^{\circ}, 0^{\circ}, 180^{\circ}$ and $360^{\circ} . \checkmark \checkmark$	(2)	
$\mathbf{4}$	Amplitude	$1 \checkmark$	(1)	
$\mathbf{5}$	Period	$360^{\circ} \checkmark$	(1)	

Example 3

Sketch the graph of $y=\cos x$ for $x \in\left[-360^{\circ} ; 360^{\circ}\right]$

- We can make use of a table or a calculator to determine
the critical points on the graph.
- The endpoints of the domain must be included i.e.
$x=-360^{\circ}$ and $x=360^{\circ}$
- All intercepts with the x and y axis must be indicated as well as all minimum and maximum points (turning points)

x	-360°	-270°	-180°	-90°	0°	90°	180°	270°	360°
y	1	0	-1	0	1	0	-1	0	1

Example 4

For $y=\cos x$

$y=\cos \mathrm{x}$	
Maximum Values	1, at $x=0^{\circ}$ and 360°
Minimum Values	-1 , at $x=-180^{\circ}$ and 180°
x-intercepts	$-270^{\circ},-90^{\circ}, 90^{\circ}$ and 270°.
Amplitude	1
Period	360°
Domain	$x \in\left[-360^{\circ} ; 360^{\circ}\right], x \in \mathbb{R}$
Range	$[-1 ; 1] y \in \mathbb{R}$

Example 5

Sketch the graph of $y=\tan x$ for $x \in\left[-180^{\circ} ; 180^{\circ}\right]$

- All intercepts with the x and y axis must be indicated.
- The endpoints of the domain must be included i.e.

$$
x=-180^{\circ} \text { and } x=360^{\circ}
$$

- The equations of the asymptotes must be written on the graph.

Answer

x	-180°	-135°	-90°	-45°	0°	45°	90°	135°	180°	225°	270°	315°	360°
y	0	1	1	unde- fined	-1	0	1	unde- fined	-1	0	1	unde- fined	-1

	$y=\tan x$	
$\mathbf{1}$	Asymptotes	$x=-90^{\circ}, x=90^{\circ}$ and $x=270^{\circ}$
$\mathbf{2}$	x-intercepts	$-180^{\circ}, 0^{\circ}, 180^{\circ}$ and 360°.
$\mathbf{3}$	Period	180°
$\mathbf{4}$	Domain	$x \in\left[-180^{\circ} ; 360^{\circ}\right], x \in \mathbb{R}$
$\mathbf{5}$	Range	$(-\infty ; \infty) . y \in \mathbb{R}$

Example 6 (Try yourself)

1. Given $f(x)=2 \cos x$ and $g(x)=\sin \left(x+30^{\circ}\right)$
a) Sketch the graphs of f and g on the same set of axes for $x \in\left[-150^{\circ} ; 180^{\circ}\right]$
Clearly show all intercepts with the axes and the coordinates of turning points.
Use your graph to answer the following questions:
b) Write down the period of f.
c) For which values of x is $f(x)=g(x)$?
d) For which values of x is $f(x)>0$?
e) For which values of x is $g(x)$ increasing?
f) Determine one value of x for which $f(x)-g(x)=1,5$.
g) If the curve of f is moved down one unit, write down the new equation of f.
h) If the curve of g is moved 45° to the left, write down the new equation of g.
